Plasma and Fusion Research

Volume 17, 1406005 (2022)

Regular Articles


Evaluation of Hydrogen-Induced Blistering of Mo/Si Multilayers with a Capping Layer
Hiroaki TOMURO1,2), Mengran JI1), Ryo NAGATA1), Koichiro KOUGE1,2), Tatsuya YANAGIDA2), Masayuki MORITA2), Masahiko ANDOU2), Yoshiyuki HONDA2), Kiichiro UCHINO1) and Tsuyoshi YOSHITAKE1)
1)
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
2)
Gigaphoton Inc. Hiratsuka facility, Shinomiya, Hiratsuka, Kanagawa 254-8567, Japan
(Received 30 September 2021 / Accepted 20 January 2022 / Published 21 February 2022)

Abstract

Mo/Si multilayer mirrors are used for extreme ultraviolet (EUV) lithography. The formation of hydrogen-induced blisters in the Mo/Si multilayer is a problem that reduces the reflectance of the mirror. To evaluate the blister-resistance of EUV mirrors, the blister formation processes of Mo/Si multilayers with a capping layer were investigated using a high-frequency hydrogen plasma system as a hydrogen ion source under varying hydrogen ion exposure conditions. As a result, it was observed that blister formation by low-energy hydrogen ion irradiation of about 10 eV increases the blister-occupied area, depending on the amount of the ion dose. Furthermore, the sample was heated to promote the diffusion of hydrogen atoms, and the activation energy of blister formation was examined using the Arrhenius plot of the ion dose required for blister formation with respect to the heating temperature. The analysis showed that when the ion flux is known, the blister formation time can be predicted.


Keywords

EUV lithography, Mo/Si multilayer, capping layer, CCP plasma, blister

DOI: 10.1585/pfr.17.1406005


References

  • [1] A.F. Bardamid et al., Plasma Devices Oper. 14, 159 (2006).
  • [2] V.K. Alimov et al., J. Nucl. Mater. 381, 267 (2008).
  • [3] H.Y. Xu et al., Nucl. Mater. 443, 452 (2013).
  • [4] Y. Uchida et al., Plasma Fusion Res. 13, 1205084 (2018).
  • [5] T. Yamazaki et al., H. Proc. SPIE 9422, 94222 (2015).
  • [6] M. van de Kerkhof et al., Proc. SPIE 11323, 113230 (2020).
  • [7] A. Endo, J. Mod. Phys. 5, 285 (2014).
  • [8] A. Dolgov et al., J. Phys. D, Appl. Phys. 47, 065205 (2014).
  • [9] D.T. Elg et al., Plasma Chem. Plasma Process. 38, 223 (2018).
  • [10] S. Braun et al., Jpn. J. Appl. Phys. 41, 4082 (2002).
  • [11] A.S. Kuznetsov et al., Proc. SPIE 8077, (2011).
  • [12] A.S. Kuznetsov et al., J. Phys. Condens. Matter. 24, 052203 (2012).
  • [13] A.S. Kuznetsov et al., J. Appl. Phys. 114, 113507 (2013).
  • [14] A.S. Kuznetsov et al., J. Appl. Phys. 115, 173510 (2014).
  • [15] R.A.J.M. van den Bos et al., J. Appl. Phys. 120, 235304 (2016).
  • [16] R.A.J.M. van den Bos et al., J. Phys. D: Appl. Phys. 50, 265302 (2017).
  • [17] R.A.J.M. van den Bos et al., J. Phys. D: Appl. Phys. 51, 115302 (2018).
  • [18] F. Okba et al., Appl. Phys. Lett. 97, 031917 (2010).
  • [19] L. Shao et al., Appl. Phys. Lett. 87, 091902 (2005).
  • [20] D.T. Elg et al., J. Vac. Sci. Technol. A 34, 021305 (2016).
  • [21] S. Bajt et al., Proc. SPIE 5037, Emerging Lithographic Technologies VII (2003).
  • [22] N. Benoit et al., Appl. Opt. 47, 3455 (2008).
  • [23] T. Feigl et al., Proc. SPIE 8679, 86790 (2013).
  • [24] R.C. Ribera et al., Appl. Phys. 188, 055303 (2015).
  • [25] K. Kato et al., J. Math. Phys. 4, 1811 (2016).
  • [26] L. St-Onge et al., Plasma Chem. Plasma Process. 14, 87 (1994).
  • [27] W. Takeuchi et al., Radiat. Eff. 71, 53 (1983).
  • [28] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd ed. (Wiley, Hoboken, NJ, 2005).
  • [29] R. Singh et al., J. Electron. Mater. 39, 2177 (2010).
  • [30] K. Sawada, J. Appl. Phys. 78, 2913 (1995).
  • [31] A. Züttel, Mater. Today Commun. 6, 24 (2003).