Plasma and Fusion Research

Volume 17, 1406003 (2022)

Regular Articles


A Linear Paul Trap without the use of the Transverse Quadrupole Field
Kunihiro KOJIMA, Masato GOTO, Hiroyuki HIGAKI, Kiyokazu ITO and Hiromi OKAMOTO
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
(Received 7 November 2021 / Accepted 12 December 2021 / Published 2 February 2022)

Abstract

A detailed experimental study has been conducted to demonstrate the efficient confinement of ions in the popular four-rod configuration of a linear Paul trap without exciting the transverse radio-frequency (rf) quadrupole field. The three-dimensional (3D) ion confinement is achieved with an identical rf voltage applied to the end electrodes. The optimum operating region is visualized in the stability tune diagram, which indicates that a large number of ions can be stored by adjusting a few fundamental parameters. The lifetime of an ion cloud in the present linear trap is over a second (corresponding to a million rf cycles), long enough for various practical applications. It is also shown through 3D numerical simulations that one can easily extract ions from the trap at a low loss rate below 10%.


Keywords

non-neutral plasma, linear Paul trap, radio-frequency confinement of ion, stability diagram

DOI: 10.1585/pfr.17.1406003


References

  • [1] W. Paul, Rev. Mod. Phys. 62, 531 (1990).
  • [2] S. Maher, F.P.M. Jjunju and S. Talor, Rev. Mod. Phys. 87, 113 (2015).
  • [3] J. Dilling, K. Blaum, M. Brodeur and S. Eliseev, Annu. Rev. Nucl. Part. Sci. 68, 45 (2018).
  • [4] H.B. Pedersen, D. Strasser, S. Ring et al., Phys. Rev. Lett. 87, 055001 (2001).
  • [5] J.I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
  • [6] R. Blatt and D. Wineland, Nature 453, 1008 (2008).
  • [7] P. Schindler, D. Nigg, T. Monz et al., New J. Phys. 15, 123012 (2013).
  • [8] C.D. Bruzewicz, J. Chiaverini, R. McConnell et al., Appl. Phys. Rev. 6, 021314 (2019).
  • [9] C. Monroe, W.C. Campbell, L.-M. Duan et al., Rev. Mod. Phys. 93, 025001 (2021).
  • [10] M. Amoretti, C. Amsler and G. Bonomi, Nature 419, 456 (2002).
  • [11] C.M. Surko and R.G. Greaves, Phys. Plasmas 11, 2333 (2004).
  • [12] G.B. Andersen, M.D. Ashkezari, M. Baquero-Ruiz et al., Nature 468, 673 (2010).
  • [13] J.R. Danielson, D.H.E. Dubin, R.G. Greaves and C.M. Surko, Rev. Mod. Phys. 87, 247 (2015).
  • [14] J. Fajan and C.M. Surko, Phys. Plasmas 27, 030601 (2020).
  • [15] R. Takai, H. Enokizono, K. Ito et al., Jpn. J. Appl. Phys. 45, 5332 (2006).
  • [16] H. Okamoto, M. Endo, K. Fukushima et al., Nucl. Instrum. Meth. A 733, 119 (2014).
  • [17] K. Moriya, M. Ota, K. Fukushima et al., Phys. Rev. Accel. Beams 19, 114201 (2016).
  • [18] K. Ito, H. Okamoto, Y. Tokashiki and K. Fukushima, Phys. Rev. Accel. Beams 20, 064201 (2017).
  • [19] J.D. Prestage, G.J. Dick and L. Maleki, J. Appl. Phys. 66, 1013 (1989).
  • [20] D.J. Berkland, J.D. Miller, J.C. Bergquist, W.M. Itano and D.J. Wineland, J. Appl. Phys. 83, 5025 (1998).
  • [21] S.A. Diddams, Th. Udem, J.C. Bergquist et al., Science 293, 825 (2001).
  • [22] S.M. Brewer, J.-S. Chen, A.M. Hankin et al., Phys. Rev. Lett. 123, 033201 (2019).
  • [23] E.A. Burt, J.D. Prestage, R.L. Tjoelker et al., Nature 595, 43 (2021).
  • [24] P.K. Ghosh, Ion Traps (Clarendon, Oxford, 1995).
  • [25] H. Okamoto, K. Kojima and K. Ito, Prog. Theor. Exp. Phys. 2019, 093G01 (2019).
  • [26] R.F. Bonner, J.E. Fulford, J.E. Fulford and R.E. March, Int. J. Mass Spectrom. Ion Phys. 24, 255 (1977).
  • [27] Handbook of Accelerator Physics And Engineering, edited by A.W. Chao and M. Tigner (World Scientific, Singapore, 1999), 3rd printing.
  • [28] E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958).
  • [29] K. Ito, K. Nakayama, S. Ohtsubo, H. Higaki and H. Okamoto, Jpn. J. Appl. Phys. 47, 8017 (2008).
  • [30] K. Ito, M. Matsuba and H. Okamoto, Prog. Theor. Exp. Phys. 2018, 023G01 (2018).