Plasma and Fusion Research

Volume 16, 2402041 (2021)

Regular Articles


Influence of Nitrogen Ratio on Plasma Detachment during Combined Seeding with Hydrogen on Divertor Simulation Experiment of GAMMA 10/PDX
Hiroki GAMO, Naomichi EZUMI, Tsukasa SUGIYAMA, Kunpei NOJIRI, Ayane KONDO, Mafumi HIRATA, Junko KOHAGURA, Masayuki YOSHIKAWA, Yousuke NAKASHIMA, Dogyun HWANGBO, Mizuki SAKAMOTO, Renato PERILLO1), Tatsuya KUWABARA2), Hirohiko TANAKA2), Noriyasu OHNO2), Keiji SAWADA3), Akira TONEGAWA4) and Suguru MASUZAKI5)
Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
1)
University of California San Diego, California 92093-0411, USA
2)
Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
3)
Faculty of Engineering, Shinshu University, Nagano 380-8553, Japan
4)
Graduate School of Science, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
5)
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
(Received 27 November 2020 / Accepted 25 January 2021 / Published 19 March 2021)

Abstract

Influences of nitrogen ratio on plasma detachment and molecular activated recombination (MAR) processes during combined seeding with hydrogen have been investigated utilizing end-loss plasma in the GAMMA 10/PDX tandem mirror. Additional gases were injected under the condition that hydrogen partial pressure was fixed and nitrogen partial pressure was changed from 0% - 10% compared to that of hydrogen. Electron density and ion flux further decrease with increasing nitrogen ratio. In addition, it is suggested that the hydrogen-MAR process that begins with dissociative attachment is suppressed during combined seeding of nitrogen and hydrogen. Observed emission spectrum of NH radicals suggests that the density of NH increases as nitrogen ratio increases and nitrogen-induced MAR efficiently contributes to the reduction of particle flux.


Keywords

divertor, detached plasma, nitrogen, MAR, GAMMA 10/PDX

DOI: 10.1585/pfr.16.2402041


References

  • [1] S.I. Krasheninnikov et al., Phys. Lett. A 214, 285 (1996).
  • [2] A.Yu. Pigarov et al., Phys. Lett. A 222, 251 (1996).
  • [3] N. Ohno et al., Phys. Rev. Lett. 81, 818 (1998).
  • [4] A. Tonegawa et al., J. Nucl. Mater. 313-316, 1046 (2003).
  • [5] S. Kado et al., J. Nucl. Mater. 337-339, 166 (2005).
  • [6] N. Ohno, Plasma Phys. Control. Fusion 59, 034007 (2017).
  • [7] ITER Organization, ITER Research Plan, ITR-18-003 (2018).
  • [8] A. Kallenbach et al., Plasma Phys. Control. Fusion 55, 124041 (2013).
  • [9] R. Neu et al., J. Nucl. Mater. 438, S34 (2013).
  • [10] M. Oberkofler et al., J. Nucl. Mater. 438, S258 (2013).
  • [11] R. Perillo et al., Plasma Phys. Control. Fusion 60, 105004 (2018).
  • [12] R. Perillo et al., Nucl. Mater. Energy 19, 87 (2019).
  • [13] R. Perillo et al., Phys. Plasmas 26, 102502 (2019).
  • [14] S. Abe et al., Nucl. Mater. Energy 19, 390 (2019).
  • [15] N. Ezumi et al., Nucl. Fusion 59, 066030 (2019).
  • [16] M. Inutake et al., Phys. Rev. Lett. 55, 939 (1985).
  • [17] Y. Nakashima et al., Fusion. Sci. Technol. 68, 28 (2015).
  • [18] Y. Nakashima et al., Nucl. Fusion 57, 116033 (2017).
  • [19] M. Sakamoto et al., Nucl. Mater. Energy 12, 1004 (2017).
  • [20] K. Nojiri et al., Nucl. Mater. Energy 12, 100691 (2019).
  • [21] A. Terakado et al., Nucl. Mater. Energy 12, 100679 (2019).