Plasma and Fusion Research

Volume 16, 2402006 (2021)

Regular Articles


EUV and VUV Spectra of NeIII-NeX Line Emissions Observed in the Impurity Gas-Puffing Experiments of the Large Helical Device
Tetsutarou OISHI1,2), Shigeru MORITA1,2), Masahiro KOBAYASHI1,2), Kiyofumi MUKAI1,2), Gakushi KAWAMURA1,2), Suguru MASUZAKI1,2), Yuki HAYASHI1), Chihiro SUZUKI1,2), Yasuko KAWAMOTO1), Motoshi GOTO1,2) and the LHD Experiment Group1)
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Toki, Gifu 509-5292, Japan
2)
The Graduate University for Advanced Studies, SOKENDAI, 322-6 Toki, Gifu 509-5292, Japan
(Received 9 November 2020 / Accepted 16 December 2020 / Published 10 February 2021)

Abstract

Extreme ultraviolet (EUV) and vacuum ultraviolet (VUV) wavelength spectra including line emissions released from neon (Ne) ions ranging from low to high charge states observed simultaneously in a single discharge are summarized for contribution to compile a fundamental spectral dataset for the Ne-seeded divertor heat load reduction experiments in Large Helical Device (LHD). NeIX and NeX lines were observed in the EUV wavelength range of 10∼50 Å and NeIII-NeVIII lines were observed in the VUV wavelength range of 400∼1000 Å. The temporal evolutions of the line intensities exhibited different behaviors between the edge emissions of NeIII-NeVIII with the ionization potential, Ei, of 63∼239 eV and the core emission of NeX with Ei of 1362 eV. NeIX with Ei of 1196 eV exhibited a marginal behavior between the edge emission and the core emission.


Keywords

plasma spectroscopy, extreme ultraviolet, vacuum ultraviolet, magnetically confined fusion, impurity seeding, divertor detachment

DOI: 10.1585/pfr.16.2402006


References

  • [1] ITER Physics Basis, “Chapter 4: Power and particle control”, Nucl. Fusion 39, 2391 (1999).
  • [2] M. Shimada et al., Nucl. Fusion 47, S1 (2007).
  • [3] S. Masuzaki et al., J. Nucl. Mater. 438, S133 (2013).
  • [4] K. Mukai et al., Nucl. Fusion 55, 083016 (2015).
  • [5] H. Tanaka et al., Nucl. Mater. Energy 12, 241 (2017).
  • [6] C. Suzuki et al., Nucl. Mater. Energy 14, 195 (2019).
  • [7] K. Mukai et al., Plasma Fusion Res. 15, 1402051 (2020).
  • [8] H.M. Zhang et al., Plasma Fusion Res. 11, 2402019 (2016).
  • [9] H.M. Zhang et al., Phys. Plasmas 24, 022510 (2017).
  • [10] M. Kobayashi et al., Nucl. Fusion 59, 096009 (2019).
  • [11] T. Nakano et al., J. Nucl. Mater. 438, S291 (2013).
  • [12] C. Suzuki et al., J. Nucl.Mater. 463, 561 (2015).
  • [13] G.S. Xu et al., Nucl. Fusion 60, 086001 (2020).
  • [14] Y. Takeiri et al., Nucl. Fusion 57, 102023 (2017).
  • [15] M.B. Chowdhuri et al., Appl. Opt. 47, 135 (2008).
  • [16] M.B. Chowdhuri et al., Rev. Sci. Instrum. 78, 023501 (2007).
  • [17] T. Oishi et al., Plasma Fusion Res. 10, 3402031 (2015).
  • [18] C.F. Dong et al., Rev. Sci. Instrum. 82, 113102 (2011).
  • [19] K.Y. Watanabe et al., Plasma Phys. Control. Fusion 49, 605 (2007).
  • [20] A. Kramida et al., NIST Atomic Spectra Database (ver.5.7.1), (2019). [Online]. Available: https://physics.nist.gov/asd [2020, October 27]. National Institute of Standards and Technology, Gaithersburg, MD. DOI: https://doi.org/10.18434/T4W30F
  • [21] R.L. Kelly, J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987).
  • [22] R. Katai et al., Plasma Fusion Res. 2, 014 (2007).
  • [23] X.L. Huang et al., Rev. Sci. Instrum. 85, 043511 (2014).
  • [24] C.F. Dong et al., Rev. Sci. Instrum. 81, 033107 (2010).
  • [25] E.H. Wang et al., Rev. Sci. Instrum. 83, 043503 (2012).
  • [26] H.M. Zhang et al., Jpn. J. Appl. Phys. 54, 086101 (2015).
  • [27] T. Oishi et al., Appl. Opt. 53, 6900 (2014).
  • [28] G. Kawamura et al., Plasma Phys. Control. Fusion 60, 084005 (2018).