Plasma and Fusion Research

Volume 16, 2401060 (2021)

Regular Articles


Determination of Helium-Discharge Atmospheric-Pressure Plasma Parameters and Distribution Using Numerical Simulation
Kladphet THANET, Wannakuwaththawaduge T. L. S. FERNANDO, Kazumasa TAKAHASHI1), Takashi KIKUCHI1,2) and Toru SASAKI1)
Department of Energy and Environment Science, Nagaoka University of Technology, Nagaoka 940-2188, Japan
1)
Department of Electrical, Electronics and Information Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan
2)
Department of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan
(Received 11 November 2020 / Accepted 24 February 2021 / Published 21 April 2021)

Abstract

This study investigated the chemical distribution of an atmospheric-pressure plasma jet (APPJ) along its propagation direction using numerical simulation. Low-resolution spectral data were used to estimate the gas temperature and the excitation temperature. These estimations were used with a collisional-radiative model to elucidate population densities and the electron temperature. A global model was applied to investigate the chemical species distribution in the plasma jet. The thermodynamic properties of the APPJ corresponded well to the relation Tg < Texc < Te for all the positions along the jet propagation. Chemical species generation and propagation along the plasma jet were numerically simulated using the GM with input parameters derived from the CR model and the ideal gas law.


Keywords

atmospheric-pressure plasma, numerical modeling, chemical species distribution, spectral characterization

DOI: 10.1585/pfr.16.2401060


References

  • [1] F. Tochikubo et al., Jpn. J. Appl. Phys. 53, 046202 (2014).
  • [2] P.V. Thai et al., J. Appl. Phys. 125, 063303 (2019).
  • [3] P.V. Thai et al., Mater. Res. Express 6, 9 (2019).
  • [4] R. Brandenburg et al., Contrib. Plasma Phys. 47, 72 (2007).
  • [5] K.D. Weltmann et al., Pure Appl. Chem. 82, 1223 (2010).
  • [6] X. Lu et al., Appl. Phys. Lett. 92, 151504 (2008).
  • [7] J.Y. Kim et al., Biosens. Bioelectron. 26, 555 (2010).
  • [8] T. Yuji et al., Jpn. J. Appl. Phys. 46, 795 (2007).
  • [9] M. Okubo et al., IEEE Trans. Ind. Appl. 41, 891 (2005).
  • [10] W.T.L.S. Fernando et al., IEEE TRPMS 4, 108 (2019).
  • [11] Y.H. Choi et al., Thin Solid Films 506, 389 (2006).
  • [12] J. Jánský and A. Bourdon, Appl. Phys. Lett. 99, 161504 (2011).
  • [13] P. Wang et al., J. Appl. Phys. 100, 0145012 (2006).
  • [14] K. Niemi et al., Plasma Sources Sci. Technol. 20, 055005 (2011).
  • [15] J. Jánský et al., J. Phys. D: Appl. Phys. 44, 335201 (2011).
  • [16] O. Motret et al., J. Phys. D: Appl. Phys. 33, 1493 (2000).
  • [17] Z.S. Chang et al., Phys. Plasmas 19, 073513 (2012).
  • [18] K. Yambe et al., Phys. Plasmas 24, 063512 (2017).
  • [19] S.H. Nam et al., Bull. Korean Chem. Soc. 24, 827 (2001).
  • [20] D. Mariotti et al., J. Appl. Phys. 101, 013307 (2007).
  • [21] Q. Xiong et al., Plasma Sources Sci. Technol. 22, 015011 (2013).
  • [22] H. Akatsuka, Adv. Phys. 4, 1592707 (2019).
  • [23] Y.K. Lee et al., J. Phys. D: Appl. Phys. 44, 285203 (2011).
  • [24] P.J. Bruggeman et al., Plasma Sources Sci. Technol. 23, 023001 (2014).
  • [25] J.P. Pichamuthu et al., J. Appl. Phys. 43, 4562 (1972).
  • [26] B. Bai, H.H. Sawin and B.A. Cruden, J. Appl. Phys. 99, 013308 (2006).
  • [27] C. Biloiu et al., J. Appl. Phys. 101, 073303 (2007).
  • [28] S.B. Bayram and M.V. Freamat, Am. J. Phys. 80, 664 (2012).
  • [29] U. Fantz et al., Plasma Sources Sci. Technol. 15, S137 (2006).
  • [30] D. Xiao et al., Phys. Plasmas 21, 053510 (2014).
  • [31] H. Park and W. Choe, Curr. Appl. Phys. 10, 1456 (2010).
  • [32] C. Perez et al., Phys. Rev. A 44, 6785 (1991).
  • [33] M. Itoh, T. Yabe and S. Kiyokawa, Phys. Rev. A 35, 233 (1987).
  • [34] K. Sawada et al., J. Plasma Fusion Res. 5, 001 (2010).
  • [35] H. Akatsuka, Phys. Plasmas 16, 043502 (2009).
  • [36] C.P. Ballance et al., Phys. Rev. A 74, 012719 (2006).
  • [37] T. Murakami et al., Plasma Sources Sci. Technol. 22, 045010 (2013).
  • [38] T. Murakami et al., 42nd AIAA Plasma Dynamics and Lasers Conference (2011).
  • [39] T. Murakami et al., Plasma Sources Sci. Technol. 22, 015003 (2012).
  • [40] D.X. Liu et al., Plasma Sources Sci. Technol. 19, 025018 (2010).
  • [41] H.R. Griem, Principle of Plasma Spectroscopy. Cambridge, U.K.: Cambridge Univ. Press, 1997.
  • [42] D.R. Bates et al., Proc. R. Soc. Lond. A 267, 297 (1962).
  • [43] D.R. Bates et al., Proc. R. Soc. Lond. A 270, 155 (1962)
  • [44] L.C. Johnson and E. Hinnov, Phys. Rev. 187, 143 (1969).
  • [45] J. Vlcek, J. Phys. D: Appl. Phys. 22, 623 (1989).
  • [46] A. Yanguas-Gil et al., Phys. Plasmas 11, 5497 (2004).
  • [47] T. Fujimoto, J. Quant. Spectrosc. Radiat. Transf. 21, 439 (1979).
  • [48] A. Kramida et al., NIST-Atomic Spectra Database https://physics.nist.gov/asd. (2018).
  • [49] A. Hurlbatt et al., Plasma Process. Polym. 14, 1600138 (2017).
  • [50] J. Wei and C.D. Prater, Adv. Catal. 13, 203 (1962).
  • [51] W.T.L.S. Fernando et al., in XXXIV ICPIG & ICRP-10, ISBN 978-4-900986-19-0, (2019).
  • [52] B. Twomey et al., Plasma Chem. Plasma Process. 31, 139 (2010).
  • [53] K. Thanet et al., in XXXIV ICPIG & ICRP-10, ISBN 978-4-900986-19-0, (2019).