Plasma and Fusion Research

Volume 16, 1206101 (2021)

Rapid Communications


Axial Distribution of Plasma Properties in a Hollow Cathode Plasma Discharge
Hikaru NAKAMURA and Masayuki WATANABE1)
Graduate School of Quantum Science and Technology, Nihon University, Kanda-surugadai, Tokyo 101-8308, Japan
1)
Institute of Quantum Science, Nihon University, Kanda-surugadai, Tokyo 101-8308, Japan
(Received 4 October 2021 / Accepted 15 October 2021 / Published 25 November 2021)

Abstract

Hollow cathode plasma discharge technology has several engineering and industrial applications. To further enhance these applications, information on plasma characteristics (such as its axial distribution inside the hollow cathode cavity) is essential. This work determines the axial distributions of electron temperature and density inside said cavity by inserting a triple probe. The temperature and density inside the hollow cathode cavity were approximately 4 eV and −1017 m−3, respectively. It was also confirmed that the plasma existed over almost the inside the cathode cavity and the electron temperature increased and the electron density decreased rapidly in the region near the anode.


Keywords

hollow cathode, glow discharge, plasma measurement, triple probe, axial distribution

DOI: 10.1585/pfr.16.1206101


References

  • [1] A. Guntherschulze, Z. Tech. Phys. 19, 49 (1923).
  • [2] R.R. Arslanbekov, A.A. Kudryavtsev and R.C. Tobin, Plasma Sources Sci. Technol. 7, 310 (1998).
  • [3] J. Chen, S.J. Park, Z. Fan, J.G. Eden and C. Liu, J. Microelectromech. Syst. 11, 536 (2002).
  • [4] V.I. Gushenets, A.S. Bugaev, E.M. Oks, P.M. Schanin and A.A. Goncharov, Rev. Sci. Instrum. 81, 02B305 (2010).
  • [5] Y. Ohtsu and Y. Kawasaki, J. Appl. Phys. 113, 033302 (2013).
  • [6] J. Hu and J.L. Rovey, J. Appl. Phys. 114, 073301 (2013).
  • [7] N. Kumar, R.P. Lamba, A.M. Hossain, U.N. Pal, A.D.R. Phelps and R. Prakash, Appl. Phys. Lett. 111, 213502 (2017).
  • [8] Y. Shimada, Y. Chida, N. Ohtsubo, T. Aoki, M. Takeuchi, T. Kuga and Y. Torii, Rev. Sci. Instrum. 84, 063101 (2013).
  • [9] V.K. Saini, P. Kumar, K.K. Sarangpani, S.K. Dixit and S.V. Nakhe, Rev. Sci. Instrum. 88, 093101 (2017).
  • [10] S. Karatodorov and V. Mihailov, AIP Conf. Proc. 2075, 060006 (2019).
  • [11] C. Jiang, A. Kuthi and M.A. Gundersena, Appl. Phys. Lett. 86, 024105 (2005).
  • [12] Y.D. Korolev, N.V. Landl, V.G. Geyman, O.B. Frants and G.A. Argunov, Phys. Plasmas 25, 113510 (2018).
  • [13] D. Leva, G. Alon and L. Appel, Rev. Sci. Instrum. 90, 113303 (2019).
  • [14] D.M. Goebe, G. Becatti, I.G. Mikellides and A.L. Ortega, J. Appl. Phys. 130, 050902 (2021).
  • [15] A. Hershcovitch, J. Appl. Phys. 78, 5283 (1995).
  • [16] A. Islam, T. Yamaguchi, K. Fukuyama, H. Kawazome, N. Tamura and S. Namba, IEEE Trans. Plasma Sci. 46, 20286987 (2021).
  • [17] B.P. Wood, M.A. Lieberman and A.J. Lichtenberg, IEEE Trans. Plasma Sci. 23, 4964242 (1995).
  • [18] I.D. Kaganovich, D. Sydorenko, A.V. Khrabrov, Y. Raitses, V.I. Demidov, I. Schweigert and A.S. Mustafaev, IEEE Int. Conf. Plasma Sci. and Int. Conf. High-Power Particle Beams, Washington, DC, United States (2014).