Plasma and Fusion Research

Volume 15, 2402060 (2020)

Regular Articles


Measurement of Electron Density Fluctuations Using O-Mode Microwave Imaging Reflectometry in a TST-2 Spherical Tokamak
Yoshio NAGAYAMA, Akira EJIRI1), Yuichi TAKASE1), Naoto TSUJII1), Hideya NAKANISHI2), Masaki OHSUNA2), Hayato TSUCHIYA2) and Soichiro YAMAGUCHI3)
College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
1)
Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
2)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
3)
Faculty of Engineering Science, Kansai University, 3-3-35 Yamate-cho, Suita 564-8680, Japan
(Received 30 November 2019 / Accepted 27 May 2020 / Published 19 August 2020)

Abstract

An O-mode microwave imaging reflectometry system has been installed in a spherical tokamak named TST-2. The illumination wave frequency is 23 - 32 GHz, which corresponds to the cutoff electron density of 0.65 - 1.3 × 1019 m−3. The microwave image of the scattered wave is formed on an imaging detector named horn-antenna millimeter-wave imaging detector by imaging optics that consist of an ellipsoidal aluminum mirror, a Teflon lens, and a dielectric plate. The detected channel numbers are 6 (poloidal) × 6 (toroidal) × 2 (radial). The data of power and phase of the scattered wave are sampled every 0.5 μs and are stored by the LABCOM system at the National Institute for Fusion Science via a private network named SNET. The scattered wave quickly fluctuates (∼5 μs) and has a large amplitude (>100 times). From the time evolution of the phase at the internal reconnection event, it is inferred that the reduction in amplitude may be owing to the phase mixing of scattered wave in each detector channel.


Keywords

microwave, imaging, reflectometry, plasma, ST, TST-2, electron density, fluctuation, IRE

DOI: 10.1585/pfr.15.2402060


References

  • [1] Y. Nagayama, K. Shinya and Y. Tanaka, IEEJ Trans. Fund. Mat. 132, 555 (2012).
  • [2] H. Tojo, A. Ejiri et al., Plasma Fusion Res. 2, S1065 (2007).
  • [3] Z.B. Shi, Y. Nagayama, S. Yamaguchi et al., Phys. Plasmas 18, 102315 (2011).
  • [4] Y. Nagayama, S. Yamaguchi, Z.B. Shi et al., Plasma Fusion Res. 3, 053 (2008).
  • [5] S. Yamaguchi, Y. Nagayama, D. Kuwahara, T. Yoshinaga et al., Rev. Sci. Instrum. 79, 10F111 (2008).
  • [6] T. Yoshinaga, Y. Nagayama, D. Kuwahara et al., Rev. Sci. Instrum. 81, 10D915 (2010).
  • [7] Y. Nagayama, D. Kuwahara, T. Yoshinaga et al., Rev. Sci. Instrum. 83, 10E305 (2012).
  • [8] Y. Nagayama, S. Yamaguchi et al., Plasma Fusion Res. 11, 2402111 (2016).
  • [9] D. Kuwahara, N. Ito, Y. Nagayama et al., Rev. Sci. Instrum. 85, 11D805 (2014).
  • [10] Y. Nagayama, N. Ito, D. Kuwahara et al., Rev. Sci. Instrum. 88, 044703 (2017).
  • [11] Y. Takase et al., Nucl. Fusion 41, 1543 (2001).
  • [12] H. Nakanishi, M. Kojima, C. Takahashi, M. Ohsuna, S. Imazu et al., Fusion Eng. Des. 87, 2189 (2012).