Plasma and Fusion Research

Volume 15, 1506041 (2020)

Overview Articles


Low Temperature Plasma for Astrochemistry: Toward a Further Understanding with Continuous and Precise Temperature Control
Yu Yu PHUA, Noritaka SAKAKIBARA, Tsuyohito ITO and Kazuo TERASHIMA
The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
(Received 14 April 2020 / Accepted 13 May 2020 / Published 23 September 2020)

Abstract

Astrochemistry is concerned with understanding the chemical evolution in the universe. Despite the harsh and unfavorable conditions, active organic syntheses occur throughout the universe. Laboratory experiments that simulate the conditions of the target astrophysical environment have been used to study the nature and abundances of molecules. In such laboratory simulations, discharge plasma can be used to simulate the energetic processes that occur in the universe. We review the use of discharge plasma in the domain of astrochemistry by considering Titan as an example. Additionally, we discuss the necessity for a plasma source whose temperature can be well controlled at ranges below room temperature (300 K) to simulate the low temperatures that are representative of astrophysical environments. Finally, we present a recent advancement achieved by our group in using cryoplasma, whose temperature can be controlled in a continuous and precise manner below room temperature, to simulate the chemical processes that occur on the surfaces of icy bodies in the outer solar system.


Keywords

cryoplasma, astrochemistry, low-temperature, plasma-ice interface, outer solar system

DOI: 10.1585/pfr.15.1506041


References

  • [1] E. Herbst and E.F. van Dishoeck, Annu. Rev. Astron. Astrophys. 47, 427 (2009).
  • [2] F. Palazzetti et al., J. Chin. Chem. Soc. 59, 1045 (2012).
  • [3] A. Ruf et al., Life 8, 18 (2018).
  • [4] C.R. Arumainayagam et al., Chem. Soc. Rev. 48, 2293 (2019).
  • [5] E.F. van Dishoeck, in Astrochemistry VII: Through the Cosmos from Galaxies to Planets, eds. M. Cunningham et al., (Cambridge University Press, Cambridge, 2018) p.3.
  • [6] P. Ehrenfreund and S.B. Charnley, Annu. Rev. Astron. Astrophys. 38, 427 (2000).
  • [7] E. Herbst, Chem. Soc. Rev. 30, 168 (2001).
  • [8] P. Bruston et al., J. Geophys. Res. Planets 99, 19047 (1994).
  • [9] M.L. Cable et al., Chem. Rev. 112, 1882 (2012).
  • [10] D.P. Cruikshank, in From Stardust to Planetesimals, eds. Y.J. Pendleton and A. Tielens (Astronomical Society of the Pacific, San Francisco, 1997) p. 315.
  • [11] H. Cottin et al., Planet. Space Sci. 47, 1141 (1999).
  • [12] P. Coll et al., Adv. Space Res. 16, 93 (1995).
  • [13] T.W. Scattergood, Adv. Space Res. 7, 99 (1987).
  • [14] D.J. Burke and W.A. Brown, Phys. Chem. Chem. Phys. 12, 5947 (2010).
  • [15] S.K. Atreya et al., Planet. Space Sci. 47, 1243 (1999).
  • [16] L.E. Snyder, Origins Life Evol. B. 27, 115 (1997).
  • [17] I.C.F. Mueller-Wodarg et al., Space Sci. Rev. 139, 191 (2008).
  • [18] National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, and United States Air Force, U.S. Standard Atmosphere, 1976, (US Government Printing Office, Washington, D.C.1976).
  • [19] P.A. Gerakines et al., Icarus 170, 202 (2004).
  • [20] S.F.M. Ashbourn et al., Meteorit. Planet. Sci. 42, 2035 (2007).
  • [21] C. He and M.A. Smith, Icarus 238, 86 (2014).
  • [22] C.J. Bennett et al., Astrophys. J. 660, 1588 (2007).
  • [23] C.S. Jamieson et al., Astrophys. J. Suppl. Ser. 163, 184 (2006).
  • [24] T. Koike et al., Biol. Sci. Space 17, 188 (2003).
  • [25] K.I. Öberg, Chem. Rev. 116, 9631 (2016).
  • [26] Y. Takano et al., B. Chem. Soc. Jpn. 77, 779 (2004).
  • [27] V. Mennella et al., Astrophys. J. 587, 727 (2003).
  • [28] K.K. Sullivan et al., Mon. Not. R. Astron. Soc. 460, 664 (2016).
  • [29] M.C. Boyer et al., Surf. Sci. 652, 26 (2016).
  • [30] S.M. Hörst, J. Geophys. Res. Planets 122, 432 (2017).
  • [31] A. Coustenis and F.W. Taylor, Titan: Exploring an Earth-like World (World Scientific, Singapore, 2008).
  • [32] P.L. Read et al., Q. J. R. Meteorol. Soc. 142, 703 (2016).
  • [33] H. Backes et al., Science 308, 992 (2005).
  • [34] Y.L. Yung et al., Astrophys. J. Suppl. S. 55, 465 (1984).
  • [35] C.P. McKay et al., Planet. Space Sci. 49, 79 (2001).
  • [36] C. Szopa et al., Planet. Space Sci. 54, 394 (2006).
  • [37] E. De Vanssay et al., Planet. Space Sci. 43, 25 (1995).
  • [38] H. Imanaka et al., Icarus 168, 344 (2004).
  • [39] H.B. Niemann et al., J. Geophys. Res. Planets 115, E12006 (2010).
  • [40] J. Cui et al., Icarus 200, 581 (2009).
  • [41] B.A. Magee et al., Planet. Space Sci. 57, 1895 (2009).
  • [42] V.A. Krasnopolsky, Icarus 236, 83 (2014).
  • [43] M.S. Gudipati et al., Nat. Commun. 4, 1648 (2013).
  • [44] T.T. Koskinen et al., Icarus 216, 507 (2011).
  • [45] J.H. Waite Jr. et al., Science 316, 870 (2007).
  • [46] P.K. Hong et al., Earozoru Kenkyu 31, 185 (2016).
  • [47] https://photojournal.jpl.nasa.gov/catalog/PIA17179
  • [48] Z. Martins et al., Space Sci. Rev. 209, 43 (2017).
  • [49] C. He et al., Astrophys. J. Lett. 856, L3 (2018).
  • [50] G. Gronoff et al., Astron. Astrophys. 506, 955 (2009).
  • [51] M.G. Tomasko et al., in Huygens: Science, Payload and Mission, ed. A. Wilson (European Space Agency, Noordwijk, 1997) p. 345.
  • [52] E. Sciamma-O'Brien et al., Icarus 289, 214 (2017).
  • [53] G. Thuillier et al., Sol. Phys. 214, 1 (2003).
  • [54] G. Thuillier et al., Metrologia 35, 689 (1998).
  • [55] https://www.nasa.gov/mission_pages/shuttle/shuttlemissions/archives/sts-45.html
  • [56] https://earth.esa.int/web/eoportal/satellite missions/e/eureca
  • [57] C.P. McKay, Planet. Space Sci. 44, 741 (1996).
  • [58] K. Plankensteiner et al., Icarus 187, 616 (2007).
  • [59] G. Horvath et al., Plasma Chem. Plasma P. 30, 565 (2010).
  • [60] W.R. Thompson et al., Icarus 90, 57 (1991).
  • [61] E. Sciamma-O'Brien et al., Icarus 218, 356 (2012).
  • [62] A. Mahjoub et al., Plasma Process. Polym. 11, 409 (2014).
  • [63] B.N. Khare et al., Icarus 60, 127 (1984).
  • [64] J.-M. Bernard et al., Planet. Space Sci. 51, 1003 (2003).
  • [65] O. Poch et al., Planet. Space Sci. 61, 114 (2012).
  • [66] S.M. Hörst et al., Icarus 301, 136 (2018).
  • [67] S.I. Ramírez et al., Faraday Discuss. 147, 419 (2010).
  • [68] D. Dubois et al., Icarus 317, 182 (2019).
  • [69] M. Fulchignoni et al., Nature 438, 785 (2005).
  • [70] N. Carrasco et al., Icarus 219, 230 (2012).
  • [71] G.D. McDonald et al., Icarus 108, 137 (1994).
  • [72] S. Lebonnois et al., Philos. T. R. Soc. A 367, 665 (2008).
  • [73] S. Lebonnois et al., Icarus 152, 384 (2001).
  • [74] P. Rannou et al., Adv. Space Res. 36, 2194 (2005).
  • [75] R. Moreno et al., Astron. Astrophys. 437, 319 (2005).
  • [76] W.B. Hubbard et al., Astron. Astrophys. 269, 541 (1993).
  • [77] B. Sicardy et al., J. Geophys. Res. Planets 111, E11S91 (2006).
  • [78] A.H. Bouchez, Seasonal trends in Titan's atmosphere: haze, wind, and clouds [Ph.D. thesis] (California Inst. of Technol., Pasadena, 2004).
  • [79] T. Kostiuk et al., Geophys. Res. Lett. 28, 2361 (2001).
  • [80] T. Kostiuk et al., Geophys. Res. Lett. 32, L22205 (2005).
  • [81] T. Kostiuk et al., J. Geophys. Res. Planets 111, E07S03 (2006).
  • [82] D. Luz et al., Icarus 179, 497 (2005).
  • [83] D. Luz et al., J. Geophys. Res. Planets 111, E08S90 (2006).
  • [84] F.M. Flasar et al., Science 308, 975 (2005).
  • [85] C.C. Porco et al., Nature 434, 159 (2005).
  • [86] M.K. Bird et al., Nature 438, 800 (2005).
  • [87] W.M. Folkner et al., J. Geophys. Res. Planets 111, E07S02 (2006).
  • [88] E. Karkoschka, Icarus 270, 326 (2016).
  • [89] T. Gautier et al., Icarus 213, 625 (2011).
  • [90] P.P. Lavvas et al., Planet. Space Sci. 56, 67 (2008).
  • [91] P.P. Lavvas et al., Planet. Space Sci. 56, 27 (2008).
  • [92] R.V. Yelle et al., Faraday Discuss. 147, 31 (2010).
  • [93] C.N. Keller et al., Planet. Space Sci. 46, 1157 (1998).
  • [94] D. Dubois et al., Icarus 338, 113437 (2020).
  • [95] N. Carrasco et al., Int. J. Chem. Kinet. 40, 699 (2008).
  • [96] P. Coll et al., Planet. Space Sci. 47, 1433 (1999).
  • [97] E. Sciamma-O'Brien et al., Icarus 243, 325 (2014).
  • [98] N. Fray and B. Schmitt, Planet. Space Sci. 57, 2053 (2009).
  • [99] G.D. McDonald et al., Icarus 122, 107 (1996).
  • [100] C.G. Justus and R.D. Braun, NASA article, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070032693.pdf (2007).
  • [101] A. Seiff et al., J. Geophys. Res. Planets 103, 22857 (1998).
  • [102] G.F. Lindal et al., J. Geophys. Res. Space Phys. 92, 14987 (1987).
  • [103] K. Lodders and B. Fegley Jr., The Planetary Scientist's Companion (Oxford University Press, New York 1998).
  • [104] J. Klinger, Icarus 47, 320 (1981).
  • [105] S. Stauss et al., Plasma Sources Sci. Technol. 27, 023003 (2018).
  • [106] D. Ishihara et al., Plasma Sources Sci. Technol. 17, 035008 (2008).
  • [107] Y. Noma et al., Appl. Phys. Lett. 93, 101503 (2008).
  • [108] N. Sakakibara and K. Terashima, J. Phys. D Appl. Phys. 50, 22LT01 (2017).
  • [109] G.M.M. Caro et al., Nature 416, 403 (2002).
  • [110] P. Lacerda et al., Astrophys. J. Lett. 793, L2 (2014).
  • [111] N. Peixinho et al., Astron. Astrophys. 410, L29 (2003).
  • [112] A. Doressoundiram et al., Icarus 154, 277 (2001).
  • [113] T. Montmerle et al., Europ. Astronom. Soc. Publ. Ser. 41, 325 (2010).
  • [114] D.P. Cruikshank et al., Adv. Space Res. 36, 178 (2005).
  • [115] C.K. Materese et al., Astrophys. J. 812, 150 (2015).
  • [116] N. Sakakibara et al., Astrophys. J. Lett. 891, L44 (2020).
  • [117] S.A. Stern et al., Science 350, aad1815 (2015).
  • [118] D.C. Jewitt, Astron. J. 123, 1039 (2002).
  • [119] C.K. Materese et al., Astrophys. J. 788, 111 (2014).
  • [120] C. Helling, J. Phys. Conf. Ser. 1322, 012028 (2019).