Plasma and Fusion Research

Volume 15, 1401011 (2020)

Regular Articles


Magnetically Guided Liquid Metal Divertor (MAGLIMD) with Resilience to Disruptions and ELMs
Michiya SHIMADA and Kenji TOBITA
National Institutes for Quantum and Radiological Science and Technology, Fusion Energy Research and Development Directorate, Rokkasho Fusion Institute, 2-166 Omotedate, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
(Received 20 June 2019 / Accepted 23 February 2020 / Published 14 April 2020)

Abstract

An innovative concept for power and particle removal from the divertor is proposed. This scheme takes full advantage of both liquid metal convection and conduction to remove heat from the divertor, which is the most difficult issue for fusion reactor design. We propose that a liquid metal (LM) should replace the solid divertor plates on the bottom of the vacuum vessel. The LM is continuously supplied from openings located at the inner separatrix strike point on the floor of the LM container on the bottom of the vacuum vessel, and exhausted from openings located at the outer separatrix strike point on the floor of the LM container. The LM flow is guided along the field line to reduce MHD drag. In the event of a disruption, the current induced in the LM during the current quench is in the same direction of the plasma current. The induced LM current would either attract the plasma toward the LM divertor (leading to a benign Vertical Displacement Event), or force the LM toward the core plasma, providing automatic disruption mitigation, not requiring a learning process. The use of liquid tin instead of liquid lithium would provide greater stability against Rayleigh-Taylor and Kelvin-Helmholtz instabilities in quiescent plasmas.


Keywords

fusion reactor, divertor, liquid metal, plasma facing component, power exhaust, particle control, disruption

DOI: 10.1585/pfr.15.1401011


References

  • [1] “Fusion Electricity: A roadmap to the realisation of fusion energy”, https://www.euro-fusion.org/wpcms/wp-content/uploads/2013/02/JG12.356-web.pdf
  • [2] The Joint-Core Team for the Establishment of Technology Bases Required for the Development of a Fusion DEMO Reactor, “Report by the Joint-Core Team for the Establishment of Technology Bases Required for the Development of a Fusion DEMO Reactor”, Jan. 2015, http://www.jspf.or.jp/2015/genkeiro/150119_v6.pdf
  • [3] R.A. Pitts et al., J. Nucl. Mater. 438, S48 (2013).
  • [4] Y. Sakamoto et al., IAEA FEC (2014) FIP/3-4Rb.
  • [5] Y. Ueda et al., Nucl. Fusion 57, 092006 (2017).
  • [6] M. Shimada and Y. Hirooka, Nucl. Fusion 54, 122002 (2014), https://doi.org/10.1088/0029-5515/54/12/122002
  • [7] Y. Hirooka et al., Fusion Eng. Des. 117, 140 (2017), http://dx.doi.org/10.1016/j.fusengdes.2016.06.028
  • [8] J. Miyazawa et al., Fusion Eng. Des. 125, 227 (2017).
  • [9] K. Tobita et al., Nucl. Fusion 49, 075029 (2009), https://doi.org/10.1088/0029-5515/49/7/075029
  • [10] Shercliff, Proc. Cambridge Philosophical Society 49 (1953) pp.136-144.
  • [11] L. Battezzati, Acta Metall. 37, 1791 (1989).
  • [12] Y. Gribov et al., Nucl. Fusion 47, S385 (2007).
  • [13] A. Hassanein, Atomic and Plasma-Material Interaction Data for Fusion (Supplement to the journal Nuclear Fusion) 5, 193 (1994).
  • [14] M.A. Jaworski et al., J. Nucl. Mater. 415, S985 (2011).
  • [15] P. Fiflis et al., Nucl. Fusion 56, 106020 (2016).
  • [16] A.V. Chankin, J. Nucl. Mater. 196-198, 739 (1992).
  • [17] K. Itami, Proc. 14th Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research (Würzburg) IAEA-CN-56/A-6-5.
  • [18] A. Kumagai et al., Plasma Phys. Control. Fusion 39, 1189 (1997).
  • [19] J.V. Lingertat, J. Nucl. Mater. 241-243, 402 (1997).
  • [20] R.A. Pitts, Nucl. Fusion 43, 1145 (2003).
  • [21] T. Eich, J. Nucl. Mater. 363-365, 989 (2007).
  • [22] R.A. Pitts, Nucl. Fusion 47, 1437 (2007).
  • [23] M.A. Jaworski, Plasma Phys. Control. Fusion 55, 124040 (2013).
  • [24] P. Harbour, Contrib. Plasma Phys. 28 (4/5), 417 (1988).
  • [25] P.J. Harbour, J. Nucl. Mater. 162-164, 236 (1988).
  • [26] A.V. Chankin, J. Nucl. Mater. 196-198, 739 (1992).
  • [27] B.B. Alchagirov et al., High Temperature 47, 287 (2009).
  • [28] J.A. Cahill, J. Inorg. Nucl. Chem. 26, 206 (1964).
  • [29] J. Li et al., Trans. Nonferrous Met. Soc. China 15, 1166 (2005).
  • [30] V.A. Evtikhin et al., J. Nucl. Mater. 271&272, 396 (1999).
  • [31] A.V. Chankin, Plasma Phys. Control. Fusion 56, 025003 (2014).
  • [32] R. Dux, Nucl. Fusion 51, 053002 (2011).
  • [33] M.J. Higgins et al., Atomic and Molecular Data for Fusion, Part 3, “Recommended Cross Sections and Rates for Electron Ionization of Atoms and Ions: Copper to Uranium”. Culham Laboratory, Report CLM-R294 (1989).
  • [34] J.W. Coenen et al., Nucl. Fusion 51, 083008 (2011).
  • [35] K. Krieger, J. Nucl. Mater. 415, S297 (2011).
  • [36] G. Miloshevsky and A. Hassanein, Nucl. Fusion 54, 043016 (2014).
  • [37] K. Iwase, Sci. Rep. Tohoku Univ., First Ser. 15 (1926) p.531.
  • [38] R.A. Causey, J. Nucl. Mater. 300, 91 (2002).
  • [39] D. Douai et al., J. Nucl. Mater. 438, S1172 (2013).
  • [40] M. Shimada and R.A. Pitts, J. Nucl. Mater. 415, S1013 (2011).
  • [41] J.P. Allain, “Kinematic and Thermodynamic Effects on Liquid Lithium Sputtering,” Ph.D. Thesis, NPRE, University of Illinois, Champaign-Urbana, 2001.
  • [42] M. Kondo et al., Fusion Eng. Des. 98-99, 2003 (2015), http://dx.doi.org/10.1016/j.fusengdes.2015.05.051
  • [43] T. Muroga et al., IAEA FEC (2008) FT/4-3Rb, http://www-pub.iaea.org/MTCD/Meetings/FEC2008/ft_4-3rb.pdf