Plasma and Fusion Research

Volume 14, 4406144 (2019)

Regular Articles


Effect of Higher-Order Silane Deposition on Spatial Profile of Si-H2/Si-H Bond Density Ratio of a-Si:H Films
Liu SHI, Kazuma TANAKA, Hisayuki HARA, Shota NAGAISHI, Daisuke YAMASHITA, Kunihiro KAMATAKI, Naho ITAGAKI, Kazunori KOGA and Masaharu SHIRATANI
Kyushu University, Fukuoka 819-0395, Japan
(Received 7 January 2019 / Accepted 13 May 2019 / Published 9 September 2019)

Abstract

We studied how the deposition of SiH3 radicals, higher-order silane molecules, and clusters contributed to the bond configuration of hydrogenated amorphous silicon (a-Si:H) films. In our experiment, the deposition of three species was controlled using a multi-hollow discharge plasma chemical vapor deposition (MHDPCVD) method using a cluster-eliminating filter. We reduced the incorporation of higher-order silane (HOS) molecules into the films by increasing the gas flow velocity in the hollows from 1008 to 2646 cm/s. The results show that the lower incorporation of HOS molecules into the films reduced the SiH2/SiH bond ratio, i.e., ISiH2/ISiH. Moreover, two-dimensional profiles of the ISiH2/ISiH ratio and the surface morphology suggest that the surface migration of HOS molecules is similar to that of the SiH3 radicals, and the ISiH2/ISiH ratio is localized by the deposition of HOS molecules. Moreover, the results of optical emission spectroscopy show that HOS radical generation is irrelevant to the gas flow velocity.


Keywords

a-Si:H films, SiH2/SiH bond density ratio, plasma CVD, Raman spectroscopy, microscopic FTIR

DOI: 10.1585/pfr.14.4406144


References

  • [1] A. Raj and D. Steingart, J. Electrochem. Soc. 165, B3130 (2018).
  • [2] D.L. Staebler and C.R. Wronskj, Appl. Phys. Lett. 31, 292 (1977).
  • [3] D.L. Staebler and C.R. Wronski, J. Appl. Phys. 51, 3262 (1980).
  • [4] M. Konagai, H. Takei, W.Y. Kim and K. Takahashi, Proc. 18th IEEE PVSC, 1372 (1985).
  • [5] K. Tanaka, J. Non-Cryst. Solids 137-138, 1 (1991).
  • [6] T. Nishimoto, M. Takai, H. Miyahara, M. Kondo and A. Matsuda, J. Non-Cryst. Solids 299-302, 1116 (2002).
  • [7] S. Nunomura, I. Sakata and M. Kondo, Appl. Phys. Express 6, 126201 (2013).
  • [8] S. Nunomura and I. Sakata, AIP Adv. 4, 097110 (2014).
  • [9] S. Nunomura, I. Sakata and K. Matsubara, J. Non-Cryst. Solids 436, 44 (2016).
  • [10] S. Nunomura, I. Sakata and K. Matsubara, Appl. Phys. Express 10, 081401 (2017).
  • [11] K. Koga, N. Kaguchi, K. Bando, M. Shiratani and Y. Watanabe, Rev. Sci. Instrum. 76, 113501 (2005).
  • [12] K. Koga, T. Inoue, K. Bando, S. Iwashita, M. Shiratani and Y. Watanabe, Jpn. J. Appl. Phys. 44, L1430 (2005).
  • [13] M. Shiratani, K. Koga, N. Kaguchi, K. Bando and Y. Watanabe, Thin Solid Films 506, 17 (2006).
  • [14] W.M. Nakamura, H. Matsuzaki, H. Sato, Y. Kawashima, K. Koga and M. Shiratani, Surf. Coat. Technol. 205, S241 (2010).
  • [15] S. Toko, Y. Hashimoto, Y. Kanemitu, Y. Torigoe, H. Seo, G. Uchida, K. Kamataki, N. Itagaki, K. Koga and M. Shiratani, J. Phys.: Conf. Ser. 518, 012008 (2014).
  • [16] Y. Hashimoto, S. Toko, D. Yamashita, H. Seo, K. Kamataki, N. Itagaki, K. Koga and M. Shiratani, J. Phys.: Conf. Ser. 518, 012007 (2014).
  • [17] K. Koga, W.M. Nakamura and M. Shiratani, Proc. 28th ICPIG, 1987 (2007).
  • [18] Y.-B. Park, S.-W. Rhee and J.-W. Hong, J. Vac. Sci. Technol. B 15, 1995 (1997).
  • [19] H.-N. Yang, Y.-P. Zhao, A. Chan, T.-M. U and G.-C.Wang, Phys. Rev. B 56, 4224 (1997).
  • [20] Y.-Y. Liu, C.-F. Cheng, S.-Y. Yang, H.-S. Song, G.-X. Wei, C.-S. Xue and Y.-Z. Wang, Thin Solid Films 519, 5444 (2011).
  • [21] D. Raoufi, A. Kiasatpour, H.R. Fallah and A.S.H. Rozation, Appl. Surf. Sci. 253, 9085 (2007).
  • [22] Z.-J. Liu, N. Jiang, Y.G. Shen and Y.-W. Mai, J. Appl. Phys. 92, 3559 (2002).
  • [23] Y. Watanabe, M. Shiratani and K. Koga, Advanced Plasma Technology, 227 (John Wiley & Sons, 2008).
  • [24] S. Toko, Y. Torigoe, K. Keya, T. Kojima, H. Seo, N. Itagaki, K. Koga and M. Shiratani, Surf. Coat. Technol. 326, 388 (2017).