Plasma and Fusion Research

Volume 14, 4406141 (2019)

Regular Articles


Identification and Suppression of Si-H2 Bond Formation at P/I Interface in a-Si:H Films Deposited by SiH4 Plasma CVD
Kazuma TANAKA, Hisayuki HARA, Shota NAGAISHI, Liu SHI, Daisuke YAMASHITA, Kunihiro KAMATAKI, Naho ITAGAKI, Kazunori KOGA and Masaharu SHIRATANI
Kyushu University, Fukuoka 819-0395, Japan
(Received 3 January 2019 / Accepted 21 April 2019 / Published 9 September 2019)

Abstract

Light-induced degradation is an important problem concerning hydrogenated amorphous silicon (a-Si:H) solar cells. A-Si:H films of lower Si-H2 bond density exhibit less light-induced degradation. In this study, Raman spectroscopy measurements of a-Si:H films with P-layer/I-layer structure reveal that high-density Si-H2 bonds exist in the I-layer within 60 nm of the P/I interface. These Si-H2 bonds originate from surface reactions of SiH3 radicals, as the alternative origin (i.e., cluster incorporation) is considerably suppressed by a multi-hollow discharge plasma chemical vapor deposition method. For an I-layer thickness of 20 nm, the density ratio of Si-H2 and Si-H bonds in the I-layer decreases from 0.133 to 0.053 as the substrate temperature increases from 170℃ to 250℃. Fine tuning of the substrate temperature during the initial stage of I-layer deposition is thus effective in suppressing Si-H2 bond formation at the P/I interface.


Keywords

plasma CVD, Si-H2 bond, a-Si:H, solar cell, Raman spectroscopy

DOI: 10.1585/pfr.14.4406141


References

  • [1] H. Jayakumar, K. Lee, W. Suk Lee, A. Raha, Y. Kim and V. Raghunathan, Proceedings of the 2014 international symposium on Low power electronics and design, ACM (2014).
  • [2] T. Matsui, H. Sai, A. Bidiville, H.J. Hsu and K. Matsubara, Solar Energy 170, 486 (2018).
  • [3] D.L. Staebler and C.R. Wronskj, Appl. Phys. Lett. 31, 292 (1977).
  • [4] T. Matsui, H. Sai, K. Saito and M. Kondo, Jpn. J. Appl. Phys. 51, 10NB04 (2012).
  • [5] Y. Watanabe, M. Shiratani, Y. Kubo, I. Ogawa and S. Ogi, Appl. Phys. Lett. 53, 1263 (1988).
  • [6] K. Koga, Y. Matsuoka, K. Tanaka, M. Shiratani and Y. Watanabe, Appl. Phys. Let. 77, 196 (2000).
  • [7] K. Koga, N. Kaguchi, M. Shiratani and Y. Watanabe, J. Vac. Sci. Technol. A 22, 1536 (2004).
  • [8] M. Shiratani, K. Koga, N. Kaguchi, K. Bando and Y. Watanabe, Thin Solid Films 506-507, 17 (2006).
  • [9] S. Toko, Y. Torigoe, K. Keya, T. Kojima, H. Seo, N. Itagaki, K. Koga and M. Shiratani, Surf. Coat. Technol. 326, 388 (2017).
  • [10] T. Kojima, S. Toko, K. Tanaka, H. Seo, N. Itagaki, K. Koga and M. Shiratani, J. Plasma Fusion Res. 13, 1406082 (2018).
  • [11] T. Nishimoto, M. Takai, H. Miyahara, M. Kondo and A. Matsuda, J. Non-Cryst. Solids 299-302, 1116 (2002).
  • [12] K. Koga, M. Kai, M. Shiratani, Y. Watanabe and N. Shikatani, Jpn. J. Appl. Phys. 41, L168 (2002).
  • [13] W.M. Nakamura, H. Matsuzaki, H. Sato, Y. Kawashima, K. Koga and M. Shiratani, Surf. Coat. Technol. 205, S241 (2010).
  • [14] T. Matsui, H. Sai, K. Saito and M. Kondo, Prog. Photovoltaics 21, 1363 (2013).
  • [15] S. Toko, Y. Hashimoto, Y. Kanemitu, Y. Torigoe, H. Seo, G. Uchia, K. Kamataki, N. Itagaki, K. Koga and M. Shiratani, J. Phys. Conf. Ser. 518, 012008 (2014).
  • [16] T. Nagai, A.H.M. Smets and M. Kondo, Jpn. J. Appl. Phys. 45, 8095 (2006).
  • [17] K. Koga, T. Matsunaga, Y. Kim, K. Nakahara, D. Yamashita, H. Matsuzaki, K. Kamataki, G. Uchida, N. Itagaki and M. Shiratani, Jpn. J. Appl. Phys. 51, 01AD02 (2012).
  • [18] Y. Kim, K. Hatozaki, Y. Hashimoto, G. Uchida, K. Kamataki, N. Itagaki, H. Seo, K. Koga and M. Shiratani, Jpn. J. Appl. Phys. 52, 11NA07 (2013).
  • [19] K. Koga, T. Inoue, K. Bando, S. Iwashita, M. Shiratani and Y. Watanabe, Jpn. J. Appl. Phys. 44, L1430 (2005).
  • [20] W.M. Nakamura, H. Miyahara, H. Sato, H. Matsuzaki, K. Koga and M. Shiratani, IEEE Trans. Plasma Sci. 36, 888 (2008).
  • [21] H. Seo, Y. Wang, G. Uchida, K. Kamataki, N. Itagaki, K. Koga and M. Shiratani, Electrochimica Acta 95, 43 (2013).
  • [22] G. Uchida, M. Sato, H. Seo, K. Kamataki, N. Itagaki, K. Koga and M. Shiratani, Thin Solid Films 554, 93 (2013).
  • [23] Y. Hashimoto, S. Toko, D. Yamashita, H. Seo, K. Kamataki, N. Itagaki, K. Koga and M. Shiratani, J. Phys.: Conf. Ser. 518, 012007 (2014).
  • [24] G. Uchida, Y. Kanemitsu, D. Ichida, H. Seo, K. Kamataki, N. Itagaki, K. Koga and M. Shiratani, Proceedings of the 12th Asia Pacific Physics Conference JPS Conf. Proc. 1, 015080 (2014).
  • [25] S. Toko, Y. Torigoe, W. Chen, D. Yamashita, H. Seo, N. Itagaki, K. Koga and M. Shiratani, Thin Solid Films 587, 126 (2015).
  • [26] K. Keya, T. Kojima, Y. Torigoe, S. Toko, D. Yamashita, H. Seo, N. Itagaki, K. Koga and M. Shiratani, Jpn. J. Appl. Phys. 55, 07LE03 (2016).
  • [27] M.H. Brodsky, M. Cardona and J.J. Cuomo, Phys. Rev. B 16, 3556 (1977).
  • [28] I. Sakata, M. Yamanaka and Y. Hayashi, J. Appl. Phys. 67, 3737 (1990).
  • [29] K. Kitahara, S. Murakami, A. Hara and K. Nakajima, Appl. Phys. Lett. 72, 2436 (1998).
  • [30] H. Fujiwara, M. Kondo and A. Matsuda, Appl. Phys. Lett. 82, 1227 (2003).
  • [31] M. Lozac'h, S. Nunomura, H. Sai and K. Matsubara, Sol. Energy Mater. Sol. Cells 185, 8 (2018).
  • [32] N. Hata, S. Wagner, P. Rocai Cabarrocas and M. Favre, Appl. Phys. Lett. 56, 2448 (1990).
  • [33] S. Nunomura, I. Sakata and K. Matsubara, Appl. Phys. Express 10, 081401 (2017).
  • [34] K. Maeda, A. Kuroe and I. Umezu, Phys. Rev. B 51, 10635 (1995).
  • [35] G.T. Dalakos, J.P. Plawsky and P.D. Persans, Phys. Rev. B 72, 205305 (2005).
  • [36] A. Matsuda, Jpn. J. Appl. Phys. 43, 7909 (2004).