Plasma and Fusion Research

Volume 14, 4406115 (2019)

Regular Articles


Effects of Gas Pressure on the Size Distribution and Structure of Carbon Nanoparticles Using Ar + CH4 Multi-Hollow Discharged Plasma Chemical Vapor Deposition
Sung Hwa HWANG, Kunihiro KAMATAKI, Naho ITAGAKI, Kazunori KOGA and Masaharu SHIRATANI
Department of Electronics, Kyushu University, Fukuoka 819-0395, Japan
(Received 1 January 2019 / Accepted 1 April 2019 / Published 9 September 2019)

Abstract

Using an Ar + CH4 multi-hollow discharge plasma chemical vapor deposition (MHDPCVD) method, carbon nanoparticles (CNPs) are synthesized in a size range between 10 nm and 100 nm at gas pressures from 2 Torr to 5 Torr. The size of the nanoparticles increases from 45.42 nm3 at 2 Torr to 67.85 nm3 at 5 Torr. The size dispersion also increases. Conversely, the optical emission intensities and generation of carbon related radicals decrease with increasing pressure. The Raman measurements indicate that these CNPs are composed of polymer structures containing relatively high clustered and distorted sp2 sites.


Keywords

carbon nanoparticle, multi-hollow discharge plasma chemical vapor deposition, optical emission spectroscopy, Raman spectroscopy

DOI: 10.1585/pfr.14.4406115


References

  • [1] P. Greil, Advanced Engineering Acta 17, 002 (2015).
  • [2] Y. Zhao, M. Liu, X. Deng, L. Miao, P.K. Tripathi, X. Ma, D. Zhu, Z. Xu, Z. Hao and L. Gan, Electrochimica Acta 153, 448 (2015).
  • [3] L. Xiao, Y. Cao, W.A. Henderson, M.L. Sushko, Y. Shao, J. Xiao, W. Wang, M.H. Engelhard, Z. Nie and J. Liu, Nano Energy 19, 279 (2016).
  • [4] Y. Watanabe, M. Shiratani, Y. Kubo, I. Ogawa and S. Ogi, Appl. Phys. Lett. 53, 1263 (1988).
  • [5] A.T. Bell, Science 299, 1688 (2003).
  • [6] H. Häkkinen, Nat. Chem. 4, 443 (2012).
  • [7] Z. Nie, A. Petukhova and E. Kumacheva, Nat. Nano. 5, 453 (2010).
  • [8] M. Shiratani, T. Kakeya, K. Koga, Y. Watanabe and M. Kondo, Trans. Mater. Res. Soc. Jpn. 30, 307 (2005).
  • [9] K. Koga, S. Iwashita and M. Shiratani, J. Phys. D 40, 2267 (2007).
  • [10] G. Uchida, K. Yamamoto, Y. Kawashima, M. Sato, K. Nakahara, K. Kamataki, N. Itagaki, K. Koga, M. Kondo and M. Shiratani, Phys. Status Solidi C 8, 3017 (2011).
  • [11] Y. Kim, K. Hatozaki, Y. Hashimoto, G. Uchida, K. Kamataki, N. Itagaki, H.W. Seo, K. Koga and M. Shiratani, Jpn. J. Appl. Phys. 52, 01AD01 (2013).
  • [12] M. Shiratani, K. Koga, K. Kamataki, S. Iwashita, G. Uchida, H. Seo and N. Itagaki, Jpn. J. Appl. Phys. 53, 010201 (2014).
  • [13] V. Roshni and D. Ottoor, J. Lumin. 161, 117 (2015).
  • [14] H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang and X. Yang, Chem. Commun. Issue 34, 5118 (2009). DOI: 10.1039/b907612c
  • [15] X. Sun and Y. Li, Angew. Chem. 43, 597 (2004).
  • [16] A.B. Fuertes, M. Sevilla, T. Valdes-Solis and P. Tartaj, Chem. Mater. 19, 5418 (2007).
  • [17] H. Li, X. He, Y. Liu, H. Huang, S. Lian, S. Lee and Z. Kang, Carbon 49, 605 (2011).
  • [18] K. Koga, Y. Matsuoka, K. Tanaka, M. Shiratani and Y. Watanabe, Appl. Phys. Lett. 77, 196 (2000).
  • [19] T. Kojima, S. Toko, K. Tanaka, H. Seo, N. Itagaki, K. Koga and M. Shiratani, Plasma Fusion Res. 13, 1406082 (2018).
  • [20] M. Shiratani, K. Koga, S. Iwashita, G. Uchida, N. Itagaki and K. Kamataki, J. Phys. D 44, 174038 (2011).
  • [21] S. Toko, Y. Torigoe, K. Keya, T. Kojima, H. Seo, N. Itagaki, K. Koga and M. Shiratani, Surf. Coat. Technol. 326, 388 (2017).
  • [22] W.M. Nakamura, Y. Kawashima, M. Tanaka, H. Sato, J. Umetsu, H. Miyahara, H. Matsuzaki, K. Koga and M. Shiratani, J. Plasma Fusion Res. 8, 736 (2009).
  • [23] N.A. Sanchez, C. Rincon, G. Zambrano, H. Galindo and P. Prieto, Thin Solid Films 373, 247 (2000).
  • [24] F. Sohbatzadeh, R. Safari, G.R. Etaati, E. Asadi, S. Mirzanejhad, M.T. Hosseinnejad, O. Samadi and H. Bagheri, Superlatties Microstruct. 89, 231 (2016).
  • [25] X. Bian, Q. Chen, Y. Zhang, L. Sang and W. Tang, Surf. Coat. Technol. 202, 5383 (2008).
  • [26] A.M. Daltrini, M. Sevilla, T. Valdes-Solis and P. Tartaj, J. Appl. Phys. 101, 073309 (2007).
  • [27] X. Dong, K. Koga, D. Yamashita, H. Seo, N. Itagaki, M. Shiratani, Y. Setsuhara, M. Sekine and M. Hori, Trans. Mater. Res. Soc. Jpn. 40[2], 123 (2015).
  • [28] Y.K. Lee and C.W. Chung, J. Appl. Phys. 109, 013306 (2011).
  • [29] A. Pastol and Y. Catherine, J. Phys. D. 23, 799 (1990).
  • [30] D.L. Gerrard and W.F. Maddam, Appl. Spectrosc. Rev. 22(2 & 3), 251 (1986).
  • [31] N. Everall and B. King, Macromol. Symp. 141, 103 (1999).
  • [32] H.D. Wagner, Polymer-Carbon Nanotube Composites, eds. by P. Pötschke and T. McNally (Woodhead Publishing Limited, 2011) p.400. ISBN: 9781845697617
  • [33] H. Dai, Phys. Status Solidi A 210, No9, 1874 (2013).
  • [34] J. Robertson, Mater. Sci. Eng. R37, 129 (2002).
  • [35] C.A. Freyman, Y. Chen and Y.W. Chung, Surf. Coat. Technol. 201, 164 (2006).
  • [36] Z. Xu, Y.J. Zheng, F. Jiang, Y.X. Leng, H. Sun and N. Huang, Appl. Surface Sci. 264, 207 (2013).
  • [37] C. Wei, Y.S. Wang and F.C. Tai, Diam. Relat. Mater. 18, 407 (2009).
  • [38] N. Dwivedi, S. Kumar, R.K. Tripathi, J.D. Carey, H.K. Malik and M.K. Dalai, ACS Appl. Mater. Interf. 4, 5309 (2012).
  • [39] S.B. Singh, M. Pandey, N. Chand, A. Biswas, D. Bhattacharya, S. Dash, A.K. Tyagi, R.M. Dey, S.K. Kulkarni and D.S. Patil, Bull. Mater. Sci. 31, 813 (2008).
  • [40] V.I. Korepanov, H. Hamaguchi, E. Osawa, V. Ermolenkov, I.K. Lednev, B.J.M. Etzold, O. Levinson, B. Zousman, C.P. Epperla and H.C. Chang, Carbon 121, 322 (2017).