Plasma and Fusion Research

Volume 14, 3404138 (2019)

Regular Articles


Simple Analysis of the Laser-to-Core Energy Coupling Efficiency with Magnetized Fast Isochoric Laser Heating
Shohei SAKATA, Tomoyuki JOHZAKI1), Seungho LEE, Hiroki MORITA, Kazuki MATSUO, Ryosuke KODAMA, Yasunobu ARIKAWA, Yasuhiko SENTOKU and Shinsuke FUJIOKA
Institute of Laser Engineering, Osaka University, 02-06 Yamada-Oka, Suita, Osaka 565-0871, Japan
1)
Department of Mechanical Systems Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
(Received 10 January 2019 / Accepted 31 March 2019 / Published 25 September 2019)

Abstract

In this study, we have demonstrated the enhancement of laser-to-core energy coupling using magnetized fast isochoric laser heating on the GEKKO-LFEX laser facility. We achieved a maximum coupling of 8% by applying an external magnetic field, and the coupling gradually degraded with increasing energy of the heating laser, maintaining the pulse duration and the spot diameter constant. The obtained energy couplings are consistent with those obtained using simple calculation models. The models predict that an energy coupling of 20% - 35% can be achieved by an ignition-scale core exhibiting a moderate guiding field and heating laser intensity.


Keywords

fast isochoric heating, kilo-Tesla magnetic field

DOI: 10.1585/pfr.14.3404138


References

  • [1] J. Lindl et al., Phys. Plasmas 21, 020501 (2014).
  • [2] R.S. Craxton et al., Phys. Plasmas 22, 110511 (2015).
  • [3] O.A. Hurricane et al., Nature 506, 343 (2014).
  • [4] M. Tabak et al., Phys. Plasmas 1, 1626 (1994).
  • [5] S.C. Willks et al., Phys. Rev. Lett. 69, 1383 (1992).
  • [6] F.N. Beg et al., Phys. Plasmas 4, 447 (1997).
  • [7] R. Kodama et al., Nature 412, 798 (2001).
  • [8] C. Bellei et al., Phys. Plasmas 20, 052704 (2013).
  • [9] D.J. Strozzi, et al., Phys. Plasmas 19, 072711 (2012).
  • [10] H. Daido et al., Phys. Rev. Lett. 56, 846 (1986).
  • [11] S. Fujioka et al., Sci. Rep. 3, 1170 (2013).
  • [12] J.J. Santos et al., New J. Phys. 17, 083051 (2015).
  • [13] K.F.F. Law et al., Appl. Phys. Lett. 108, 091104 (2016).
  • [14] M. Bailly-Grandvaux et al., Nat. Commun. 9, 102 (2018).
  • [15] H. Sawada et al., Appl. Phys. Lett. 108, 254101 (2016).
  • [16] H. Nagatomo et al., Nucl. Fusion 55, 093028 (2015).
  • [17] T. Johzaki et al., Nucl. Fusion 55, 053022 (2015).
  • [18] H. Morita et al., Phys. Plasmas 25, 094505 (2018).
  • [19] S. Sakata et al., Nat. Commun. 9, 3937 (2018).
  • [20] L.C. Jarrot et al., Nat. Phys. 12, 499 (2016).
  • [21] C. Yamanaka et al., IEEE J. Quantum Electron. 17, 9, 1639 (1981).
  • [22] N. Miyanaga et al., J. Phys. IV France 133, 81 (2006).
  • [23] Y. Iwasa et al., Fusion Eng. Des. 125, 89 (2017).
  • [24] T. Ozaki et al., Rev. Sci. Instrum. 85, 11E113 (2014).
  • [25] A.A. Solodov and R. Betti, Phys. Plasmas 15, 042707 (2008).
  • [26] J.R. Davies et al., Phys. Plasmas 20, 083118 (2013).
  • [27] C. Hombourger, J. Phys. B. At. Mol. Opt. Phys. 31, 3693 (1998).
  • [28] S. Fujioka et al., Phys. Rev. E 91, 063012 (2015).
  • [29] S. Atzeni and M. Tabak, Plasma Phys. Control. Fusion 47, B769 (2005).
  • [30] S. Kar et al., Phys. Rev. Lett. 102, 055001 (2009).
  • [31] F. Pérez et al., Phys. Rev. Lett. 107, 065004 (2011).
  • [32] N. Iwata et al., Nat. Commun. 9, 623 (2018).
  • [33] A. Sorokovikova et al., Phys. Rev. Lett. 116, 155001 (2016).
  • [34] S. Fujioka et al., Phys. Plasmas 23, 056308 (2016).