Plasma and Fusion Research

Volume 14, 3403147 (2019)

Regular Articles


Knock-on Tail Observation Scenario Using VUV and VIS Spectra from Energetic Ions Produced by 6Li+d Reaction
Kento KIMURA and Hideaki MATSUURA
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
(Received 10 January 2019 / Accepted 17 July 2019 / Published 2 September 2019)

Abstract

In the scattering process of energetic ions, the contribution of the nuclear elastic scattering (NES) appears in addition to Coulomb scattering. The NES forms a knock-on tail (non-Maxwellian tail) in ion velocity distribution functions. When the knock-on tail is formed, energy spectra of particles produced by a nuclear reaction are distorted from Gaussian distribution. The vacuum ultra violet (VUV) and visible light (VIS) emission spectra of 7Li produced by the 6Li+d reaction are broadened by the Doppler effect. Characteristics of these broadened spectra depend on the shape of ion distribution functions. Therefore, the knock-on tails on the deuteron velocity distribution function could be observed by using the Doppler effect for the VUV and VIS spectra. Because high wavelength resolution instruments (∼ 10 pm in VUV, ∼ 4 pm in VIS) are available, detailed measurements of the size and shape of the knock-on tail by VUV and VIS spectroscopy might be possible. We evaluated the VUV and VIS spectra for the cases when a knock-on tail is formed and not formed assuming the hydrogen beam injected deuterium plasma. Clear difference of the Doppler broadening between the cases was seen. It is shown that the VUV and VIS emission spectra can be a useful tool for the knock-on tail observation.


Keywords

nuclear elastic scattering, knock-on tail, deuterium plasma, VUV, VIS, Doppler broadening, atomic process

DOI: 10.1585/pfr.14.3403147


References

  • [1] J.J. Devaney and M.L. Stein, Nucl. Sci. Eng. 46, 323 (1971).
  • [2] S.T. Perkins and D.E. Cullen, Nucl. Sci. Eng. 77, 20 (1981).
  • [3] L. Ballabio, G. Gorini and J. Källne, Phys. Rev. E 55, 3358 (1997).
  • [4] J. Källne, L. Ballabio, J. Frenje et al., Phys. Rev. Lett. 85, 1246 (2000).
  • [5] H. Matsuura and Y. Nakao, Phys. Plasmas 14, 054504 (2007).
  • [6] Y. Nakao, H. Matsuura, T. Hanada et al., Nucl. Fusion 28, 1029 (1988).
  • [7] H. Matsuura et al., Plasma Fusion Res. 2, S1078 (2007).
  • [8] S. Hirayama, H. Matsuura and Y. Nakao J. Plasma Fusion Res. SERIES 8, 662 (2009).
  • [9] H. Matsuura et al., Fusion Sci. Technol. 60, 634 (2011).
  • [10] H. Matsuura et al., Plasma Fusion Res. 8, 2403064 (2013).
  • [11] R.J. Fonck et al., Phys. Rev. A 29, 3288 (1984).
  • [12] D. Ryutov, Phys. Scr. 45, 153 (1992).
  • [13] P. Helander et al., Plasma Phys. Control. Fusion. 35, 363 (1993).
  • [14] J.D. Gaffey, J. Plasma Phys. 16, 149 (1976).
  • [15] V.T. Voronchev et al., Mem. Fac. Eng. Kyushu Univ. 51, 63 (1991).
  • [16] M.J. Singh et al., New J. Phys. 19, 055004 (2017).
  • [17] https://dbshino.nifs.ac.jp
  • [18] http://physics.nist.gov/PhysRefData/ASD/
  • [19] C. Suzuki et al., J. Phys. Conf. Ser. 163, 012019 (2009).
  • [20] M. Goto et al., Fusion Sci. Technol. 58, 394 (2010).