Plasma and Fusion Research

Volume 14, 3403127 (2019)

Regular Articles


First Application of 3D Peripheral Plasma Transport Code EMC3-EIRENE to Heliotron J
Ryota MATOIKE, Gakushi KAWAMURA2,3), Shinsuke OHSHIMA1), Masahiro KOBAYASHI2,3), Yasuhiro SUZUKI2,3), Kazunobu NAGASAKI1), Suguru MASUZAKI2), Shinji KOBAYASHI1), Satoshi YAMAMOTO1), Shinichiro KADO1), Takashi MINAMI1), Hiroyuki OKADA1), Shigeru KONOSHIMA1), Toru MIZUUCHI1), Hirohiko TANAKA4), Hiroto MATSUURA5), Yuhe FENG6) and Heinke FRERICHS7)
Graduate School of Energy Science, Kyoto University, Gokasyo, Uji 611-0011, Japan
1)
Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
2)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
3)
Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Japan
4)
Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
5)
Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
6)
Max-Planck Institute for Plasma Physics, Greifswald, Germany
7)
University of Wisconsin-Madison, Wisconsin, U.S.A.
(Received 9 January 2019 / Accepted 5 April 2019 / Published 25 September 2019)

Abstract

The 3D peripheral plasma and neutral transport code, EMC3-EIRENE was applied to the Heliotron J with a wide and flexible controllability of magnetic configuration. This code requires a three-dimensional (3D) grid with high resolution in the peripheral plasma region to reproduce the fine plasma structure. The grid generation tool, FLARE, was utilized to create the grid in conjunction with the code developed to arbitrarily set the outer boundary of the peripheral grid. After setting up the 3D grid, we carried out the EMC3-EIRENE calculation successfully for the first time in the Heliotron J's standard configuration. In addition, the convergence of the iterative calculation and the effects of different grid resolutions upon the calculation were investigated. A good numerical convergence was obtained, and the influence of resolution was observed in the electron density in the divertor region.


Keywords

EMC3-EIRENE, Scrape-Off Layer, divertor, transport, modeling, Heliotron J

DOI: 10.1585/pfr.14.3403127


References

  • [1] P.C. Stangeby and G.M. McCracken, Nucl. Fusion 30, 1225 (1990).
  • [2] A.S. Kukushkin et al., Nucl. Fusion 49, 075008 (2009).
  • [3] Y. Feng et al., Nucl. Fusion 49, 095002 (2009).
  • [4] A. Loarte et al., Nucl. Fusion 47, 203 (2007).
  • [5] S. Masuzaki et al., Nucl. Fusion 42, 750 (2002).
  • [6] T.E. Evans et al., Nature Physics 2, 419 (2006).
  • [7] M. Kobayashi et al., Nucl. Fusion 55, 104021 (2015).
  • [8] Y. Feng et al., Contrib. Plasma Phys. 44, 57 (2004).
  • [9] D. Reiter et al., Fusion Sci. Technol. 47, 172 (2005).
  • [10] Y. Feng et al., Nucl. Fusion 56, 126011 (2016).
  • [11] F. Effenberg et al., Nucl. Fusion 57, 036021 (2017).
  • [12] H. Frerichs et al., Nucl. Fusion 57, 126022 (2017).
  • [13] M. Kobayashi et al., Fusion Sci. Technol. 58, 220 (2010).
  • [14] G. Kawamura et al., Contrib. Plasma Phys. 54, 437 (2014).
  • [15] G. Kawamura et al., Plasma Phys. Control. Fusion 60, 084005 (2018).
  • [16] S. Dai et al., Plasma Phys. Control. Fusion 59, 085013 (2017).
  • [17] S. Dai et al., Nucl. Fusion 58, 096024 (2018).
  • [18] T. Lunt et al., Nucl. Fusion 52, 054013 (2012).
  • [19] J. Huang et al., Plasma Phys. Control. Fusion 56, 075023 (2014).
  • [20] T. Obiki et al., Nucl. Fusion 41, 833 (2001).
  • [21] T. Mizuuchi et al., Fusion Sci. Technol. 50, 352 (2006).
  • [22] T. Mizuuchi et al., J. Nucl. Mater. 363-365, 600 (2007).
  • [23] T. Mizuuchi et al., J. Nucl. Mater. 313-316, 947 (2003).
  • [24] Y. Nakamura, J. Plasma Fusion Res. 69, 41 (1993).
  • [25] M. Wakatani et al., Nucl. Fusion 40, 569 (2000).
  • [26] H. Frerichs et al., Comput. Phys. Commun. 181, 61 (2010).