Plasma and Fusion Research

Volume 14, 3403123 (2019)

Regular Articles


Prediction of Neutron Emission Anisotropy for Validation of an Analysis Model for Neutron Spectra in Beam-Injected LHD Deuterium Plasmas
Shota SUGIYAMA, Hideaki MATSUURA, Takuya GOTO1,2), Takeo NISHITANI1), Mitsutaka ISOBE1,2) and Kunihiro OGAWA1,2)
Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki 509-5292, Japan
2)
SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292, Japan
(Received 10 January 2019 / Accepted 12 May 2019 / Published 11 July 2019)

Abstract

We developed an analysis model to predict and describe neutron emission anisotropy caused by anisotropy of energetic deuterons in the large helical device (LHD), by considering energetic-ion distribution functions, the differential cross-section of fusion reactions, and the exact shape of the vacuum vessel of the LHD. Neutron emission anisotropy that can be observed by the neutron activation system is evaluated numerically assuming deuterium-beam-injected deuterium plasmas confined by the LHD using the model. We demonstrate the dependence of neutron emission anisotropy on the beam-injection direction and the electron temperature. Based on this estimation, we propose an experimental scenario to validate the analysis model and easily understand energetic-ion anisotropy caused by the neutral beam injection.


Keywords

neutron emission anisotropy, non-Maxwellian tail, neutron emission spectrum, neutral beam injection, deuterium plasma, Large Helical Device

DOI: 10.1585/pfr.14.3403123


References

  • [1] J.G. Cordey and M.J. Houghton, Nucl. Fusion 13, 215 (1973).
  • [2] T.H. Stix, Nucl. Fusion 15, 737 (1975).
  • [3] H. Matsuura, M. Nakamura, O. Mitarai and Y. Nakao, Plasma Phys. Control. Fusion 53, 035023 (2011).
  • [4] S. Sugiyama, H. Matsuura and K. Ogawa, Plasma Phys. Control. Fusion 60, 105003 (2018).
  • [5] J.M. Dawson, H.P. Furth and F.H. Tenney, Phys. Rev. Lett. 26, 1156 (1971).
  • [6] M. Isobe et al., Rev. Sci. Instrum. 85, 11E114 (2014).
  • [7] N. Pu, T. Nishitani, M. Isobe, K. Ogawa, H. Kawase, T. Tanaka, S.Y. Li, S. Yoshihashi and A. Uritani, Rev. Sci. Instrum. 88, 113302 (2017).
  • [8] M. Isobe et al., Nucl. Fusion 58, 082004 (2018).
  • [9] T. Nishitani, K. Ogawa, N. Pu, H. Kawase, S. Murakami, M. Isobe, M. Osakabe and the LHD Experimental Group, Plasma Fusion Res. 13, 3402024 (2018).
  • [10] H. Matsuura and Y. Nakao, J. Plasma Fusion Res. SERIES 9, 48 (2010).
  • [11] S. Sugiyama, H. Matsuura and D. Uchiyama, Phys. Plasmas 24, 092517 (2017).
  • [12] T. Nishitani, H. Matsuura, N. Pu, K. Ogawa, H. Kawase, M. Isobe and the LHD Experimental Group, IEEE Trans. Plasma Sci. 47, 12 (2019).
  • [13] S. Sugiyama, H. Matsuura and T. Goto, Plasma Fusion Res. 11, 2403049 (2016).
  • [14] A. Sagara et al., Fusion Eng. Des. 89, 2114 (2014).
  • [15] D.A. Spong, Phys. Plasmas 18, 056109 (2011).
  • [16] S.P. Hirshman and J.C. Whitson, Phys. Fluids 26, 3553 (1983).
  • [17] S. Murakami, N. Nakajima and M. Okamoto, Trans. Fusion Technol. 27, 256 (1995).
  • [18] H. Brysk, Plasma Phys. 15, 611 (1973).
  • [19] M. Drosg and O. Schwerer, Production of monoenergetic neutrons between 0.1 and 23 MeV: neutron energies and cross-sections, Handbook of Nuclear Activation Data (Vienna: IAEA) STI/DOC/10/273, ISBN 92-0-135087-2 (1987).
  • [20] H.-S. Bosch and G.M. Hale, Nucl. Fusion 32, 611 (1992).
  • [21] P.P.H. Wilson, R. Feder, U. Fischer, M. Loughlin, L. Petrizzi, Y. Wu and M. Youssef, Fusion Eng. Des. 83, 824 (2008).
  • [22] K. Ogawa, M. Isobe, H. Kawase, T. Nishitani, R. Seki, M. Osakabe and the LHD Experimental Group, Nucl. Fusion 58, 044001 (2018).
  • [23] D. Pelowits (Ed.), MCNP6 Users Manual, LA-CP-14-00745 (Los Alamos National Laboratory, Los Alamos, 2013).