Plasma and Fusion Research

Volume 14, 3402074 (2019)

Regular Articles


Current Status of NIFS-SWJTU Joint Project for Quasi-Axisymmetric Stellarator CFQS
Mitsutaka ISOBE1,2), Akihiro SHIMIZU1), Haifeng LIU3), Hai LIU3), Guozhen XIONG3), Dapeng YIN4), Kunihiro OGAWA1,2), Yasuo YOSHIMURA1), Motoki NAKATA1,2), Shigeyoshi KINOSHITA1), Shoichi OKAMURA1), Changjian TANG5), Yuhong XU3) and the CFQS Team1,2,3,4,5)
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
2)
SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292, Japan
3)
Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
4)
Hefei Keye Electro Physical Equipment Manufacturing Co., Ltd, Hefei 230000, People's Republic of China
5)
College of Physical Science and Technology, Sichuan University, Chengdu 610041, People's Republic of China
(Received 10 January 2019 / Accepted 28 February 2019 / Published 3 June 2019)

Abstract

The world's newest quasi-axisymmetric stellarator CFQS is constructed as a joint project of the National Institute for Fusion Science, Japan and Southwest Jiaotong University, the People's Republic of China. The project is named “NSJP for CFQS”. The CFQS has a major radius of 1 m, toroidal periods of 2, and aspect ratio of 4. The toroidal magnetic field strength will be increased up to 1 T. The CFQS equilibrium is characterized by low-aspect ratio and quasi-axisymmetry, having both natures of two-dimensional tokamak and three-dimensional stellarator. The CFQS offers new opportunities and fields to increase understanding of toroidal fusion plasmas.


Keywords

CFQS, CHS, CHS-qa, quasi-axisymmetric stellarator, effective helical ripple, optimized configuration, modular coil

DOI: 10.1585/pfr.14.3402074


References

  • [1] Y. Takeiri, IEEE Trans. Plasma Sci. 46, 1141 (2018).
  • [2] Y. Takeiri, IEEE Trans. Plasma Sci. 46, 2348 (2018).
  • [3] M. Osakabe et al., IEEE Trans. Plasma Sci. 46, 2324 (2018).
  • [4] M. Isobe et al., Nucl. Fusion 58, 082004 (2018).
  • [5] R.C. Wolf et al., Nucl. Fusion 57, 102020 (2017).
  • [6] T.S. Pedersen et al., Phys. Plasmas 24, 055503 (2017).
  • [7] J. Nührenberg et al., in Theory of Fusion Plasmas (Proc. Joint Varenna-Lausanne Int. Workshop Varenna, 1994), Editrice Compositori, Bologna 3 (1994).
  • [8] M. Yokoyama et al., Nucl. Fusion 42, 1094 (2002).
  • [9] K. Matsuoka et al., Plasma Phys. Report 23, 588 (1997).
  • [10] S. Okamura et al., J. Plasma Fusion Res. SERIES 3, 73 (2000).
  • [11] S. Okamura et al., Nucl. Fusion 41, 1865 (2001).
  • [12] K. Matsuoka et al., Fusion Sci. Technol. 46, 378 (2004).
  • [13] S. Okamura et al., Nucl. Fusion 44, 575 (2004).
  • [14] A. Reiman et al., J. Plasma Fusion Res. SERIES 1, 429 (1998).
  • [15] A. Reiman et al., Plasma Phys. Control. Fusion 41, B273 (1999).
  • [16] G.H. Neilson et al., Phys. Plasmas 7, 1911 (2000).
  • [17] M.C. Zarnstorff et al., Plasma Phys. Control. Fusion 43, A237 (2001).
  • [18] M. Drevlak et al., Contrib. Plasma Phys. 53, 459 (2013).
  • [19] F. Brochard et al., 41st EPS Conference on Plasma Physics, Berlin, June 23-27, 2014. P2.081.
  • [20] H. Liu et al., Plasma Fusion Res. 13, 3405067 (2018).
  • [21] A. Shimizu et al., Plasma Fusion Res. 13, 3403123 (2018).
  • [22] Y. Xu et al., 27th IAEA Fusion Energy Conference (FEC 2018), Ahmedabad, India, 22-27 October 2018. EX/P5-23.
  • [23] S. Okamura et al., 45th EPS Conference on Plasma Physics, 2-6 July 2018, Prague, Czech Republic, Vol.42A, P5.1034.
  • [24] Y. Kinosita et al., The 27th International Toki Conference on Plasma and Fusion Research & The 13th Asia Pacific Plasma Theory Conference, Ceratopia Toki, Toki-city, Gifu, Japan, November 19-22, 2018. P1-40.
  • [25] M. Isobe et al., 28th EPS Conference on Controlled Fusion and Plasma Physics, Funchal, 18-22 June 2001, ECA Vol.25A, 761 (2001).
  • [26] M. Isobe et al., J. Plasma Fusion Res. SERIES 5, 360 (2002).
  • [27] K.C. Shaing et al., Phys. Fluids B 1, 148 (1989).
  • [28] S.P. Hirshman and J.C. Whitson, Phys. Fluids 26, 3553 (1983).
  • [29] V.V. Nemov et al., Phys. Plasmas 6, 4622 (1999).
  • [30] K. Nishimura et al., Fusion Technol. 17, 86 (1990).
  • [31] M. Nakata et al., The 27th International Toki Conference on Plasma and Fusion Research & The 13th Asia Pacific Plasma Theory Conference, Ceratopia Toki, Toki-city, Gifu, Japan, November 19-22, 2018. O-1.
  • [32] Y. Yoshimura et al., Plasma Fusion Res. 3, S1076 (2008).
  • [33] N.B. Marushchenko et al., Plasma Fusion Res. 2, S1129 (2007).
  • [34] S. Okamura et al., Nucl. Fusion 35, 283 (1995).
  • [35] K. Matsuoka et al., Fusion Eng. Des. 26, 135 (1995).
  • [36] M. Isobe et al., Fusion Sci. Technol. 50, 229 (2006).
  • [37] S. Okamura et al., Plasma Phys. Control. Fusion 46, A113 (2004).
  • [38] T. Minami et al., J. Phys.: Conference Series 123, 012006 (2008).
  • [39] D.A. Spong et al., Phys. Plasmas 18, 056109 (2011).
  • [40] K. Ogawa et al., The 27th International Toki Conference on Plasma and Fusion Research & The 13th Asia Pacific Plasma Theory Conference, Ceratopia Toki, Toki-city, Gifu, Japan, November 19-22, 2018. P1-39.
  • [41] A. Fujisawa et al., Rev. Sci. Instrum. 67, 3099 (1996).
  • [42] H. Iguchi, J. Plasma Fusion Res. SERIES 4, 82 (2001).
  • [43] A. Shimizu et al., Rev. Sci. Instrum. 89, 113507 (2018).