Plasma and Fusion Research

Volume 14, 3401160 (2019)

Regular Articles


Numerical Simulation for Enhancement of H Production in the DC Arc-Discharge Hydrogen Negative Ion Source for Medical Use
Shota YAMADA, Hisashi KITAMI1), Shinji NOMURA1), Yasushi AOKI1), Kazuo HOSHINO and Akiyoshi HATAYAMA
Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
1)
Sumitomo Heavy Industries, Ltd., 19 Natsushima, Yokosuka, Kanagawa 237-8555, Japan
(Received 9 January 2019 / Accepted 9 September 2019 / Published 29 October 2019)

Abstract

A multi-cusp DC arc-discharge hydrogen negative ion (H) source has been developed for proton cyclotron, which is used for Boron Neutron Capture Therapy (BNCT). The purpose of this study is to understand the dependence of H production on the operation parameters and optimize H production in the source. In this paper, we focus on the effect of magnetic filter field on H volume production. The H density in the extraction region has been numerically estimated in the three patterns of magnetic filter field by using 3D electron transport code and 0D rate equations. The result suggests that the magnetic filter field which is localized in the vicinity of the extraction region is suitable for the efficient H volume production.


Keywords

boron neutron capture therapy, hydrogen negative ion source, volume production, magnetic filter field, 3D electron transport simulation, 0D rate equation

DOI: 10.1585/pfr.14.3401160


References

  • [1] H. Etoh, Y. Aoki, H. Mitsubori et al., Rev. Sci. Instrum. 87, 02B107 (2014).
  • [2] H. Etoh, M. Onai, Y. Aoki et al., Rev. Sci. Instrum. 87, 02B135 (2016).
  • [3] A. Hatayama et al., New J. Physics 20, 065001 (2018).
  • [4] M. Bacal, A. Hatayama and J. Peters, IEEE Trans. Plasma Sci. 33, 1845 (2005).
  • [5] M. Bacal and M. Wada, Appl. Phys. Rev. 2, 021305 (2015).
  • [6] S. Yamada et al., AIP Conf. Proc. (in press).
  • [7] I. Fujino, A. Hatayama, N. Takado and T. Inoue, Rev. Sci. Instrum. 79, 02A510 (2008).
  • [8] R. Terasaki, I. Fujino, A. Hatayama, T. Mizuno and T. Inoue, Rev. Sci. Instrum. 81, 02A703 (2010).
  • [9] T. Shibata, M. Kashiwagi, T. Inoue, A. Hatayama and JAEA NBI Group, J. Appl. Phys. 114, 143301 (2013).
  • [10] C.K. Birdsal and A.B. Langdon, Plasma Physics via Computer Simulation (IOP Publishing, Bristol, 1991), Chap. 2, pp.12-15.
  • [11] G.A. Emmert et al., Phys. Fluids 23, 803 (1980).
  • [12] K. Nanbu, S. Igarashi and Y. Watanabe, Proc. Soviet Union-Japan Symp. Comput. Fluid Dynamics, (Computing Center of the USSR Academy of Sciences, 1989), Vol. 2, pp.126-132.
  • [13] T. Takizuka and H. Abe, J. Comput. Phys. 25, 205 (1977).
  • [14] R. Celiberto, R.K. Janev, A. Laricchiuta, M. Capitelli et al., Atom. Data. Nucl. 77, 161 (2001).
  • [15] P.T. Greenland and D. Reiter, Juelich Report No. JUEL-3528 (1996).