Plasma and Fusion Research

Volume 14, 3401132 (2019)

Regular Articles


Plasma Degradation of Dibromophenols and Interpretation by Molecular Orbital Theory
Tetsuya AKITSU1,3), Shin-Ichiro KOJIMA2), Keiko KATAYAMA-HIRAYAMA1), Hiroki KURODA3) and Hiroshi OKAWA3)
1)
University of Yamanashi, 4 Takeda, Kofu, Yamanashi 400-8511, Japan
2)
Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
3)
Happy Science University, 4427-1 Hitotsumatsu-Hei, Chosei, Chiba 299-4325, Japan
(Received 2 January 2019 / Accepted 17 June 2019 / Published 20 August 2019)

Abstract

Dielectric barrier discharge was operated in the liquid-gas boundary and applied to the degradation of Dibromophenol (DBP). The brominated aromatic compound show acute toxicity to aqueous living and, occasionally, carcinogenic and hormone-disruptive effect for human. The plasma degradation provides the advanced oxidation process by charged species, anion as well as neutral radicals. Plasma-degradation with the anion-exchange successfully worked and the controlled the production of BrO3 by NO3 . Interpretation of the observed difference in the resistance is interpreted using the Molecular Orbital Theory.


Keywords

plasma electrolysis, aromatic compound, advanced oxidation, molecular orbital theory

DOI: 10.1585/pfr.14.3401132


References

  • [1] WHO (World Health Organization) (1995) In: Van Esch GJ, ed., “Tetrabromobisphenol A and Derivatives. Geneva: WHO International Programme on Chemical Safety”, Environmental Health Criteria 172, 25 (1995).
  • [2] K. Katayama-Hirayama, A. Suzuki, S. Mukaiyama, K. Hirayama and T. Akitsu, Sustainable Environment Research 20(4), 221 (2010).
  • [3] K. Katayama-Hirayama, N. Toda, A. Tauchi, A. Fujioka, T. Akitsu, H. Kaneko and K. Hirayama, J. Environ. Sci. 26, 1284 (2014). http://DOI.ORG/10.1016/S1001-0742(13)60600-2
  • [4] IARC section 172.730 Potassium Bromate. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.730
  • [5] S. Kojima, K. Katayama-Hirayama and T. Akitsu, World J. Eng. Technol. 4, 423 (2016). http://DOI.ORG/10.4236/wjet.2016.43042
  • [6] P. Lukes and B.R. Locke, Ind. Eng. Chem. Res. 44(9), 2921 (2005). https://DOI.ORG/10.1021/ie0491342
  • [7] Biomedical CAChe 6.0 Users Guide (2003), Fujitsu.
  • [8] K. Somekawa, Molecular Orbital Calculation of Organic Molecules and The Applications (MOCOM) (Kyushu University Press, 2013) ISBN978-4-7985-0089-8.
  • [9] U. Von Gunten, Water Res. 37(7), 1443 (2003). PMID: 12600374.
  • [10] U. Von Gunten, Water Res. 37(7), 1469 (2003). PMID: 12600375.
  • [11] U. Von Gunten and J. Holgne, Environ. Sci. Technol. 28(7), 1234 (1994). http://DOI.ORG/10.1021/es00056a009
  • [12] F. Parrino, G. Camera - Roda, V. Loddo, V. Augugliaro and L. Palmisano, Appl. Catal. B Environmental 178, 37 (2013). http://DOI.ORG/10.1016/j.apcatb.2014.10.081