Plasma and Fusion Research

Volume 14, 3401069 (2019)

Regular Articles


Generation of Spiral Shape Nitrogen Recombining Plasma for Atomic Nitrogen Source
Koji ASAOKA, Noriyasu OHNO, Yuki HAYASHI1), Shin KAJITA2) and Hirohiko TANAKA
Graduate School of Engineering, Nagoya University, Nagoya 466-8603, Japan
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
2)
Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 466-8603, Japan
(Received 9 January 2019 / Accepted 27 February 2019 / Published 25 April 2019)

Abstract

We propose a new method using a spiral shape nitrogen plasma with a long magnetic connection length to produce high density nitrogen (N) atoms for nitriding application. A high density N molecular ion plasma was generated by DC discharge and is transported along a long spiral magnetic field line. As a result, the electron temperature drops along the magnetic field to be low enough to produce dissociate recombining plasma, where dissociative recombination would occur to generate N atoms. 2D Langmuir probe measurement showed that the electron temperature and density decreased along the magnetic field. Optical emission spectroscopy showed the ratio of the atomic N and N molecular emission intensities increased with a discharge power. The ground state N atom density was estimated by analyzing the atomic line intensity.


Keywords

nitrogen atom source, dissociative recombination, spiral shape plasma, nitriding method, NAGDIS-T

DOI: 10.1585/pfr.14.3401069


References

  • [1] T. Takase, Tetsu-to-hagane 66, 9, 1423 (1980).
  • [2] M. Hudis, J. Appl. Phys. 44, 1489 (1973).
  • [3] J.M. Hendrie, J. Chem. Phys. 22, 1503 (1954).
  • [4] S. Tada et al., J. Appl. Phys. 88, 1756 (2000).
  • [5] H. Shoyama et al., J. Vac. Sci. Technol. 24, 1999 (2006).
  • [6] St. Halas et al., Int. J. Mass Spectram. Ion Phys. 10, 157 (1972).
  • [7] J.R. Peterson et al., J. Chem. Phys. 108, 1978 (1998).
  • [8] H. Tahara, et al., IEEE Trans. Plasma Sci. 26, 1307 (1998).
  • [9] Q.S. Yu et al., Plasma Chem. Plasma Proc. 18, 461 (1998).
  • [10] L. Robin et al., Phys. Plasmas 1, 444 (1994).
  • [11] H. Akatsuka et al., IEEE Trans. Plasma Sci. 42, 3691 (2014).
  • [12] R. Ichiki et al., Mater. Lett. 71, 134 (2012).
  • [13] K. Yada et al., J. Nucl. Mater. 390-391, 290 (2009).
  • [14] N. Ohno, Plasma Phys. Control. Fusion 59, 3, 034007 (2017).
  • [15] R.P. Vaudo et al., J. Vac. Sci. Technol. B: 12, 1232 (1994).
  • [16] M. Goto et al., J. Plasma Fusion Res. 79, 12, 1287 (2003).
  • [17] R.M. Frost et al., J. Appl. Phys. 84, 6 (1998).
  • [18] Y. Ichikawa et al., Jpn. J. Appl. Phys. 49, 106101 (2010).