Plasma and Fusion Research

Volume 14, 2403017 (2019)

Regular Articles


Sensitivity Check of Background Plasma Parameter during SMBI in the GAMMA 10 Central-Cell by 3-D Monte-Carlo Simulations
Md. Maidul ISLAM, Shinji KOBAYASHI1), Nobuhiro NISHINO2), Md. Shahinul ISLAM3), Takaaki IIJIMA3), Masayuki YOSHIKAWA3), Junko KOHAGURA3), Mamoru SHOJI4) and Yousuke NAKASHIMA3)
Bangladesh Atomic Energy Commission, Agargaon, Dhaka-1207, Bangladesh
1)
Institute of Advanced Energy, Kyoto University, Gokasyo, Uji 611-0011, Japan
2)
Grauate School of Engineering, Hiroshima University, Hiroshima 739-8527, Japan
3)
Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
4)
National Institute for Fusion Science, Oroshi-cho, Toki 509-5292, Japan
(Received 3 October 2018 / Accepted 8 December 2018 / Published 12 February 2019)

Abstract

The gas fueling by supersonic molecular beam injection (SMBI) has been carried out in the world largest tandem mirror device GAMMA 10 and higher plasma density has been achieved compared with conventional gas-puffing. Three-dimensional Monte-Carlo code DEGAS is applied to GAMMA 10 and the spatial distribution of neutral particle density during SMBI is investigated. σdiv is introduced as divergence angle index of the initial particle to simulate the molecular beam injected by SMBI. It is defined to be unity in the case of cosine distribution of the angular profile of launched particles. It is found that the particles are suppressed and localized in the injection point according to the reduction of divergence angle index, σdiv and well explained the GAMMA 10 SMBI experimental results at divergence angle index, σdiv = 0.33. In this paper the simulation is carried out in the different profiles of electron temperature in order to check the sensitivity of the background plasma parameter. The simulation results indicate that the penetration depth depended on the background plasma parameter, electron temperature.


Keywords

GAMMA 10, neutral transport simulation, DEGAS, supersonic molecular beam injection, Laval nozzle, high-speed camera

DOI: 10.1585/pfr.14.2403017


References

  • [1] L. Yao et al., Nucl. Fusion 47, 1399 (2007).
  • [2] K. Hosoi et al., Plasma Fusion Res. 9, 3402087 (2014).
  • [3] M.M. Islam et al., Plasma Fusion Res. 11, 2402053 (2016).
  • [4] D.L. Yu et al., Nucl. Fusion 52, 082001 (2012).
  • [5] T. Mizuuchi et al., Contrib. Plasma Phys. 50, 639 (2010).
  • [6] V.A. Soukhanovskii et al., Rev. Sci. Instrum. 75, 4320 (2004).
  • [7] H. Takenaga et al., Nucl. Fusion 50, 115003 (2010).
  • [8] X. Zheng et al., Plasma Phys. Control. Fusion 55, 115010 (2013).
  • [9] A. Murakami et al., Plasma Phys. Control. Fusion 54, 055006 (2012).
  • [10] M.M. Islam et al., AIP Conf. Proc. 1771, 030018 (2016).
  • [11] Y. Nakashima et al., Nucl. Fusion 57, 116033 (2017).
  • [12] D. Heifetz et al., J. Comput. Phys. 46, 309 (1982).
  • [13] D.P. Stotler et al., Contrib. Plasma Phys. 34, 392 (1994).
  • [14] Y. Nakashima et al., J. Nucl. Mater. 196-198, 493 (1992).
  • [15] M.S. Islam et al., Plasma Phys. Control. Fusion 59, 125010 (2017).
  • [16] M.S. Islam et al., Plasma Fusion Res. 13, 3403080 (2018).
  • [17] M.S. Islam et al., Fusion Eng. Des. 125, 216 (2017).
  • [18] M.S. Islam et al., Nucl. Mater Energy 18, 182 (2019).
  • [19] M.S. Islam et al., Plasma Fusion Res. 11, 2402042 (2016).
  • [20] Y. Nakashima et al., Nucl. Mater Energy 18, 216 (2019).