Plasma and Fusion Research

Volume 14, 2402030 (2019)

Regular Articles


Studies of Plasma Confinement and Stability in a Gas Dynamic Trap: Results of 2016 - 2018
Peter A. BAGRYANSKY, Egor D. GOSPODCHIKOV, Alexander A. IVANOV, Andrey A. LIZUNOV, Evgeny Yu. KOLESNIKOV, Zahar E. KONSHIN, Olga A. KOROBEYNIKOVA, Yury V. KOVALENKO, Vladimir V. MAXIMOV, Sergey V. MURAKHTIN, Egor I. PINZHENIN, Vadim V. PRIKHODKO, Valery Ya. SAVKIN, Alexander G. SHALASHOV, Dmitry I. SKOVORODIN, Elena I. SOLDATKINA, Alexander L. SOLOMAKHIN and Dmitry V. YAKOVLEV
Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia
(Received 28 September 2018 / Accepted 19 December 2018 / Published 12 February 2019)

Abstract

Paper presents a brief overview of the studies carried out in 2016-2018 at the Gas Dynamic Trap device at the Budker Institute. These studies were focused on the experimental substantiation of a new version of the Gas Dynamic Multi-mirror Trap project, which is aimed at developing the key technologies needed to implement a number of thermonuclear applications of linear magnetic traps. The paper reviews the work aimed at stable plasma confinement under auxiliary ECR heating. We showed that a value of on-axis electron temperature up to 450 eV at plasma density 1.2 × 1019 m −3 can be supported steadily. Studies on processes in expanders, which determine the axial thermal conductivity of the plasma, showed that the profile of the electric potential in the expander corresponds to a theory that gives favorable predictions regarding the thermal insulation properties of the expander. It was shown that the density of neutral gas in the expander in the range up to 1020 m −3 does not have a significant effect on energy confinement in the trap, despite an estimate of the critical density of 1018 m −3.


Keywords

nuclear fusion, mirror trap, gas dynamic trap, plasma confinement, MHD stability, electron cyclotron resonance heating, axial electron conductivity

DOI: 10.1585/pfr.14.2402030


References

  • [1] A. Ivanov and V. Prikhodko, Plasma Phys. Control. Fusion 55, 063001 (2013).
  • [2] P.A. Bagryansky, A.D. Beklemishev and V.V. Postupaev, J. Fusion Energy 38, 162 (2019). https://doi.org/10.1007/s10894-018-0174-1
  • [3] A. Beklemishev, Phys. Plasmas 23, 082506 (2016).
  • [4] A.D. Beklemishev, Fusion Sci. Technol. 63, (No. 1T), 355 (2013).
  • [5] A.D. Beklemishev, AIP Conf. Proc. 1771, 040006 (2016).
  • [6] D.V. Yakovlev et al., Nucl. Fusion 58, 094001 (2018).
  • [7] E. Soldatkina et al., Phys. Plasmas 24, 022505 (2017).
  • [8] A. Beklemishev et al., Fusion Sci Technol, 63 (No. 1T), 46 (2013).
  • [9] T.C. Simonen, J. Fusion Energy 35, 63 (2016).
  • [10] T.C. Simonen et al., J. Fusion Energy 29, 558 (2010).
  • [11] K.V. Zaytsev et al., Physica Scripta 2014 (No. T161), 014004 (2014).
  • [12] P.A. Bagryansky et al., Phys. Rev. Lett. 114, 205001 (2015).
  • [13] I.A. Kotelnikov, Fusion Sci. Technol. 51 (No. 2T), 186 (2007).
  • [14] P.A. Bagryansky et al., Fusion Sci. Technol. 59 (No. 1T), 31 (2011).
  • [15] P.A. Bagryansky et al., Fusion Eng. Des. 70, 13 (2004).
  • [16] D.V. Yurov and V.V. Prikhodko, Phys.-Usp. 57, 1118 (2014).
  • [17] I.K. Konkashbaev et al., J. Exp. Theor. Phys. 47, 501 (1978).
  • [18] D.D. Ryutov, Fusion Sci. Technol. 47, 148 (2005).
  • [19] T. Imai et al., Trans. Fusion Sci. Technol. 63, 8 (2013).
  • [20] E. Soldatkina et al., Plasma Fusion Res. 14, 2402006 (2019).
  • [21] E.E. Yushmanov, Sov. Phys. JETP 22, 409 (1966).