Plasma and Fusion Research

Volume 14, 2402023 (2019)

Regular Articles


First Experimental Campaign on SMOLA Helical Mirror
Anton V. SUDNIKOV1,2), Aleksey D. BEKLEMISHEV1,2), Vladimir V. POSTUPAEV1,2), Ivan A. IVANOV1,2), Anna A. INZHEVATKINA2), Vladislav F. SKLYAROV1,2), Aleksandr V. BURDAKOV1,3), Konstantin N. KUKLIN1), Andrey F. ROVENSKIKH1) and Nikita A. MELNIKOV1)
1)
Budker Institute of Nuclear Physics, 11 Acad. Lavrentiev av., Novosibirsk, Russia
2)
Novosibirsk State University, 2 Pirogov str., Novosibirsk, Russia
3)
Novosibirsk State Technical University, 20 Karl Marx av., Novosibirsk, Russia
(Received 14 September 2018 / Accepted 16 December 2018 / Published 12 February 2019)

Abstract

Experimental evidence of the plasma flow suppression by the helical magnetic mirror is presented. Reported experiments were done during the first plasma campaign in the SMOLA helical mirror device at self-consistent floating potentials of all in-vessel electrodes and at minimal magnetic fields suitable for confinement regime. The experimental results are consistent with two main theory predictions for the helical mirror confinement: a reduction of the axial plasma flow and the inward particle pinch. The helical mirror technology can dramatically improve fusion reactor prospects of open magnetic configurations.


Keywords

magnetic confinement, controlled fusion, open trap, dynamic multimirror confinement, moving magnetic mirrors, helical mirror

DOI: 10.1585/pfr.14.2402023


References

  • [1] T.C. Simonen et al., J. Fusion Energy 29, 558 (2010).
  • [2] P.A. Bagryansky et al., Nucl. Fusion 55, 053009 (2015).
  • [3] A.A. Ivanov and V.V. Prikhodko, Physics-Uspekhi 60 (5), 509 (2017).
  • [4] A.V. Anikeev et al., Materials 8, 8452 (2015).
  • [5] A.D. Beklemishev et al., Fusion Sci. Technol. 63 (No. 1T), 46 (2013).
  • [6] V.V. Postupaev et al., Nucl. Fusion 57, 036012 (2017).
  • [7] A.V. Burdakov and V.V. Postupaev, AIP Conf. Proc. 1771, 080002 (2016).
  • [8] A.D. Beklemishev, Fusion Sci. Technol. 63 (No. 1T), 355 (2013).
  • [9] V.V. Postupaev et al., Fusion Eng. Des. 106, 29 (May 2016).
  • [10] G.I. Budker, V.V. Mironov and D.D. Ryutov, “Gas dynamics of a dense plasma in a corrugated magnetic field.” In Collection of papers (1982).
  • [11] Ilan Be'ery et al., Plasma Phys. Control. Fusion, in press (2018). https://doi.org/10.1088/1361-6587/aadd69
  • [12] A.D. Beklemishev et al., Fusion Sci. Technol. 57, 351 (2010).
  • [13] A. Burdakov et al., Fusion Sci. Technol. 51 (No. 2T), 106 (2007).
  • [14] A.D. Beklemishev, AIP Conf. Proc. 1771, 040006 (2016).
  • [15] A.D. Beklemishev, Phys. Plasmas 22, Iss.10, 103506 (2015).
  • [16] A.V. Sudnikov, Fusion Eng. Des. 122, 85 (2017).
  • [17] V.I. Davydenko, A.A. Ivanov and G.I. Shul'zhenko, Plasma Phys. Rep. 41 (11), 930 (2015).
  • [18] I.A. Ivanov et al., Instrum. Exp. Tech. 59 (2), 262 (2016). https://doi.org/10.1134/s0020441216020214