Plasma and Fusion Research

Volume 14, 2402016 (2019)

Regular Articles


Measurements of the Plasma Parameters in the D-Module of GAMMA 10/PDX during Impurity Gas Kr Injection
Md. Shahinul ISLAM, Yousuke NAKASHIMA, Akiyoshi HATAYAMA1), Hiroto MATSUURA2), Kazuya ICHIMURA3), Takaaki IIJIMA, Takayuki YOKODO, Kunpei NOJIRI, Akihiro TERAKADO, Md. Maidul ISLAM, Tsubasa YOSHIMOTO, Sotaro YAMASHITA, Toshiki HARA, Masayuki YOSHIKAWA, Naomichi EZUMI and Mizuki SAKAMOTO
Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
1)
Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522, Japan
2)
Radiation Research Center, Osaka Prefecture University, Osaka 599-8570, Japan
3)
Graduate School of Engineering, Kobe University, Kobe, Hyogo 657-8501, Japan
(Received 10 September 2018 / Accepted 9 December 2018 / Published 12 February 2019)

Abstract

This paper investigates the impact of Krypton (Kr) seeding on plasma parameters in the D-module of GAMMA 10/PDX experimentally based on the calorimeter, Langmuir probe and high-speed camera measurements. The heat flux distribution along the V-shaped target plate reduces with the increasing Kr injection. The time behavior of ion flux shows that it decreases with the increase of Kr seeding. The electron temperature (Te) reduces significantly due to Kr seeding into the D-module. The electron density shows a so-called roll-over phenomenon during Kr seeding. The heat and ion fluxes reduce with the increasing Kr seeding into the D-module. Two-dimensional images captured by the high-speed camera also show that the emission intensity significantly reduces inside the V-shaped target at the higher Kr injection. These outcomes represent the impact of Kr seeding for generating the detached plasma.


Keywords

GAMMA 10/PDX, D-module, Kr injection, heat and ion fluxes, plasma detachment

DOI: 10.1585/pfr.14.2402016


References

  • [1] P.C. Stangeby, Plasma Phys. Control. Fusion 43, 223 (2000).
  • [2] ITER Physics Basis, Nucl. Fusion 39, 2391 (1999).
  • [3] M. Bernert et al., Nucl. Mater. Energy 12, 111 (2017).
  • [4] S.I. Krasheninnikov et al., Phys. Plasma 23, 055602 (2016).
  • [5] N. Ohno, Plasma Phys. Control. Fusion 59, 034007 (2017).
  • [6] K. Hoshino et al., Plasma Fusion Res. 12, 1405023 (2017).
  • [7] X. Bonnin et al., Nucl. Mater. Energy 12, 1100 (2017).
  • [8] M.S. Islam et al., Fusion Eng. Des. 125, 216 (2017).
  • [9] Y. Nakashima et al., Fusion Eng. Des. 85, 956 (2010).
  • [10] Y. Nakashima et al., Nucl. Mater. Energy 18, 216 (2019).
  • [11] Y. Nakashima et al., Nucl. Fusion 57, 116033 (2017).
  • [12] M.S. Islam et al., Plasma Fusion Res. 11, 2402042 (2016).
  • [13] M. Iwamoto et al., Plasma Fusion Res 9, 3402121 (2016).
  • [14] M.S. Islam et al., Plasma Phys. Control. Fusion 59, 125010 (2017).
  • [15] M.S. Islam et al., Plasma Fusion Res. 13, 3403080 (2018).
  • [16] M.S. Islam et al., Nucl. Mater. Energy 18, 182 (2019).