Plasma and Fusion Research

Volume 14, 2402002 (2019)

Regular Articles


YAG-Thomson Scattering System in GAMMA 10/PDX Central and End Cells
Masayuki YOSHIKAWA, Tomoya MOURI, Junko KOHAGURA, Yoriko SHIMA, Tomoya YAMASAKI, Shun SUTO, Hiroyuki NAKANISHI, Mizuki SAKAMOTO, Yousuke NAKASHIMA, Ryutaro MINAMI, Naomichi EZUMI, Ichihiro YAMADA1), Ryo YASUHARA1), Hisamichi FUNABA1), Takashi MINAMI2) and Naoki KENMOCHI3)
Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
1)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
2)
Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
3)
Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
(Received 25 September 2018 / Accepted 6 November 2018 / Published 24 January 2019)

Abstract

We developed an yttrium aluminum garnet (YAG)-Thomson scattering (TS) system for radial profile measurements of electron temperature and density in the GAMMA 10/PDX central cell. The optical collection system for TS light was constructed from three spherical mirrors and nine bundled optical fibers. The radial positions were intervals less than 5 cm in the range of ± 20 cm and were measured by moving the fixed fiber bundle position from shot to shot. We constructed a multi-pass TS system with laser amplification, which can increase the signal intensity and time resolution of the TS diagnostic system. In addition, we installed the end-TS system using the central-TS YAG laser in order to measure the electron temperature and density in a divertor simulation experimental module in the GAMMA 10/PDX end cell.


Keywords

Thomson scattering system, multi-pass Thomson, electron temperature, electron density, tandem mirror GAMMA 10/PDX

DOI: 10.1585/pfr.14.2402002


References

  • [1] K. Narihara et al., Fusion Eng. Des. 34-35, 67 (1997).
  • [2] J.H. Foote et al., Rev. Sci. Instrum. 61, 2861 (1990).
  • [3] J. Hatae et al., Rev. Sci. Instrum. 70, 772 (1999).
  • [4] T. Hatae et al., Rev. Sci. Instrum. 77, 10E508 (2006).
  • [5] J. Hiratsuka et al., Plasma Fusion Res. 5, 044 (2010).
  • [6] H. Togashi et al., Plasma Fusion Res. 9, 1202005 (2014).
  • [7] M. Yu Kantor et al., Plasma Phys. Control. Fusion 51, 055002 (2009).
  • [8] M. Yoshikawa et al., Plasma Fusion Res. 6, 1202095 (2011).
  • [9] M. Yoshikawa et al., J. Instrum. 8, C10016 (2013).
  • [10] M. Yoshikawa et al., J. Instrum. 10, C11006 (2015).
  • [11] Y. Nakashima et al., Nucl. Fusion 57, 116033 (2017).
  • [12] R. Minami et al., Trans. Fusion Sci. Technol. 59, 244 (2011).
  • [13] Md. M. Islam et al., Plasma Fusion Res. 11, 2402053 (2016).
  • [14] M. Yoshikawa et al., Plasma Fusion Res. 8, 1205169 (2013).
  • [15] M. Yoshikawa et al., Plasma Fusion Res. 9, 1202126 (2014).
  • [16] M. Yoshikawa et al., Rev. Sci. Instrum. 79, 10E706 (2008).
  • [17] Y. Hasegawa et al., Trans. Fusion Sci. Technol. 63, 337 (2013).
  • [18] M. Yoshikawa et al., Rev. Sci. Instrum. 87, 11D617 (2016).
  • [19] M. Yoshikawa et al., Rev. Sci. Instrum. 89, 10C102 (2018).