Plasma and Fusion Research

Volume 14, 1403155 (2019)

Regular Articles


A Study of the O4+ Emissivity Profiles with Two Separate Photon Emissivity Coefficient Databases and a Comparison of the Impurity Diffusion Coefficients in the Aditya Tokamak
Amrita BHATTACHARYA, Joydeep GHOSH1), Malay B. CHOWDHURI1), Prabhat MUNSHI, Izumi MURAKAMI2) and the ADITYA team1)
Nuclear Engineering and Technology Programme, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
1)
Spectroscopy Diagnostic Division, Institute for Plasma Research, Gandhinagar, Bhat-382428, Gujarat, India
2)
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
(Received 24 February 2019 / Accepted 16 May 2019 / Published 9 October 2019)

Abstract

The present study is an analysis between radial emissivity profiles of the 650.024 nm transition of the O4+ ion obtained using two separate Photon Emissivity Coefficient (PEC) databases. Emissivity values of the 650.024 nm O4+ transition in visible-spectral region have been experimentally obtained for the Aditya tokamak. The radial number density distributions of different charge states of oxygen are estimated using a semi-implicit numerical method applied over the radial impurity transport equation. The 650.024 nm emissivity is calculated using the obtained impurity number density and with PECs from two separate databases namely the ADAS (Atomic Data and Analysis Structure) and the NIFS (National Institute for Fusion Science) database. Although impurity diffusivity profiles must not be dependent upon the choice of PEC databases; yet a requirement of separate impurity (oxygen) diffusivity profiles for the two PEC databases is observed, such that their corresponding calculated O4+ emissivities best depict the experimental emissivity data. A difference in the ionization and recombination rate coefficients provided in the ADAS and NIFS databases can lead to discrepancies in the impurity number densities calculated. The effects upon the impurity diffusivity while using ionization and recombination rate coefficients from two separate databases are further studied.


Keywords

photon emissivity coefficient, ionization rate coefficient, recombination rate coefficient, ADAS database, NIFS database, semi-implicit numerical method, impurity transport, ADITYA tokamak

DOI: 10.1585/pfr.14.1403155


References

  • [1] C. Breton, C. De Michelis and M. Mattioli, Nucl. Fusion 16 (6), 891 (1976).
  • [2] D. Post, J. Abdallah, R.E.H. Clark and N. Putvinskaya, Phys. Plasmas 2, 2328 (1995).
  • [3] A. Kirschner, V. Philipps, J. Winter and U. Kögler, Nucl. Fusion 40 (5), 989 (2000).
  • [4] P.C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (IOP Publishing Ltd., Bristol, 2000).
  • [5] I. Condrea, E. Haddad, B.C. Gregory and G. Abel, Phys. Plasmas 7, 3641 (2000).
  • [6] J. Ghosh, R.C. Elton, H.R. Griem, A. Case, A.W. DeSilva, R.F. Ellis, A. Hassam, R. Lunsford and C. Teodorescu, Phys. Plasmas 13, 022503 (2006).
  • [7] M. Goswami, P. Munshi, A. Saxena, M. Kumar and A. Kumar, Fusion Eng. Des. 89(11), 2659 (2014).
  • [8] S. Banerjee, V. Kumar, M.B. Chowdhuri, J. Ghosh, R. Manchanda, K.M. Patel and P. Vasu, Measurement Sci. Technol. 19, 045603 (2008).
  • [9] M.B. Chowdhuri, J. Ghosh, S. Banerjee, R. Dey, R. Manchanda, V. Kumar, P. Vasu, K.M. Patel, P.K. Atrey, Y. Shankara Joisa, C.V.S. Rao, R.L. Tanna, D. Raju, P.K. Chattopadhyay, R. Jha, C.N. Gupta, S.B. Bhatt, Y.C. Saxena and the Aditya Team, Nucl. Fusion 53, 023006 (2013).
  • [10] W. Horton and W. Rowan, Phys. Plasmas 1, 901 (1994).
  • [11] S. Sudo, Plasma Phys. Control. Fusion 58, 043001 (2016).
  • [12] K. Lackner, K. Behringer, W. Engelhardt and R. Wunderlich, Zeitschrift für Naturforschung 37a(5), 931 (1982).
  • [13] J. Wesson, Tokamaks, 3rd Edition (Clarendon Press, Oxford, 2004).
  • [14] A. Bhattacharya, P. Munshi, J. Ghosh and M.B. Chowdhuri, J. Fusion Energy 37 (5), 211 (2018).
  • [15] 2019, HPC2013, ‘High Performance Computing system’, Indian Institute of Technology Kanpur, https://www.iitk.ac.in/ccnew/index.php/hpc (as on 05. 01. 2019).
  • [16] R. Dey, J. Ghosh, M.B. Chowdhuri, R. Manchanda, S. Banerjee, N. Ramaiya, D. Sharma, R. Srinivasan, D.P. Stotler and Aditya Team, Nucl. Fusion 57, 086003 (2017).
  • [17] TFR group, Association Euratom - CEA sur la fusion, Département de recherches sur la fusion controlée, Centre d'études nucléaires, Fontenay-aux-Roses, France, Nucl. Fusion 22, 1173 (1982).
  • [18] 2019, http://open.adas.ac.uk/ ‘Effective Ionization Rate Coefficients’, ‘Effective Recombination Rate Coefficients’, Oxygen (as on 05.01.2019).
  • [19] R. Dux, ‘Impurity Transport in tokamak plasma’ – STRAHL manual, IPP 10/27 Garching (2005).
  • [20] G. Fussman, A.R. Field, A. Kallenbach, K. Kreiger, K.-H. Steuer and the ASDEX team, Plasma Phys. Control. Fusion 33(13), 1677 (1991).
  • [21] R. Guirlet, C. Giroud, T. Parisot, M.E. Puiatti, C. Bourdelle, L. Carraro, N. Dubuit, X. Garbet and P.R. Thomas, Plasma Phys. Control. Fusion 48, B63 (2006).
  • [22] S.P. Hirshman and D.J. Sigmar, Nucl. Fusion 21(9), 1079 (1981).
  • [23] H. Nozato, S. Morita, M. Goto, Y. Takase, A. Ejiri, T. Amano, K. Tanaka, S. Inagaki and LHD experimental group, Phys. Plasmas 11(5), 1920 (2004).
  • [24] R. Dux, A.G. Peeters, A. Gude, A. Kallenbach, R. Neu and ASDEX Upgrade Team, Nucl. Fusion 39(11), 1509 (1999).
  • [25] 2019, ADAS Database, ‘Photon Emissivity Coefficients’, http://open.adas.ac.uk/adf15 (as on 05.01.2019).
  • [26] 2019, NIFS Database, ‘AMDIS IONIZATION’, https://dbshino.nifs.ac.jp/nifsdb/amdis_ion/top ‘AMDIS RECOMBINATION’, https://dbshino.nifs.ac.jp/nifsdb/amdis_rec/top (as on 05.01.2019).