Plasma and Fusion Research

Volume 14, 1402128 (2019)

Regular Articles


Fast Tangentially Viewed Soft X-Ray Imaging System Based on Image Intensifier with Microchannel Plate Detector on QUEST
Canbin HUANG, Kazuaki HANADA1), Kengoh KURODA1), Shinichro KOJIMA1), Hiroaki FUJIYOSHI1), Hiroki MIURA1), Tomoki YAMADA1), Hiroshi IDEI1), Makoto HASEGAWA1) and Takumi ONCHI1)
Interdisciplinary Graduate School of Engineering and Sciences, Kyushu University, Kasuga 812-8580, Japan
1)
Research Institute for Applied Mechanics, Kyushu University, Kasuga 812-8580, Japan
(Received 15 April 2019 / Accepted 11 June 2019 / Published 24 July 2019)

Abstract

A two-dimensional (2D) soft X-ray (SXR) imaging system for obtaining tangential views of plasma-produced SXR has been installed on the QUEST tokamak. The system comprises a chevron micro-channel plate (MCP) and a phosphor screen, which together serve as an SXR detector and image intensifier, along with a high-speed video camera for capturing and storing image data. The system can be used in imaging mode to obtain high spatial- and time-resolution images or in photon counting mode at an ultra-high framing rate of 100 kHz to obtain SXR energy spectra. Here, we propose a method of in situ energy calibration based on the transmission characteristics of a 25-μm Be filter. The proposed method was used to obtain SXR spectra in the energy range 1.5 - 3.5 keV with a core electron temperature in agreement with electron temperatures measured by the Thomson scattering method. Furthermore, oscillations based on the modification of plasma parameters and rapid increases in impurity radiation were detected in imaging mode. This dual-mode-compatible method for obtaining 2D SXR diagnostics is useful for the study of high temperature plasmas.


Keywords

soft X-ray imaging, MCP, photon counting

DOI: 10.1585/pfr.14.1402128


References

  • [1] S. Ohdachi et al., Rev. Sci. Instrum. 74(3), 2136 (2003).
  • [2] J. Mlynar et al., Fusion Eng. Des. 66-68, 905 (2003).
  • [3] R.D. Gill et al., Nucl. Fusion 40(2), 163 (2000).
  • [4] L.F. Delgado-Aparicio et al., J. Appl. Phys. 102(7), 073304 (2007).
  • [5] K. Hanada et al., Plasma Phys. Control. Fusion 32(14), 1289 (1990).
  • [6] K. Tritz et al., Rev. Sci. Instrum. 83(10), 10E109 (2012).
  • [7] Y. Liang et al., Rev. Sci. Instrum. 71(10), 3711 (2000).
  • [8] K. Tritz et al., Rev. Sci. Instrum. 74(3), 2161 (2003).
  • [9] F. Zhou et al., Rev. Sci. Instrum. 88(7), 073505 (2017).
  • [10] J.L. Wiza, Nucl. Instrum. Methods 162(1-3), 587 (1979).
  • [11] K. Hanada et al., Nucl. Fusion 57(12), 126061 (2017).
  • [12] S. Tashima et al., Nucl. Fusion 54(2), 11 (2014).
  • [13] M. Ishiguro et al., Phys. Plasmas 19(6), 062508 (2012).
  • [14] H. Idei et al., Nucl. Fusion 57(12), 126045 (2017).
  • [15] K. Hanada et al., Plasma Sci. Technol. 13(3), 307 (2011).
  • [16] K. Hanada et al., Plasma Fusion Res. 5, S1007 (2010).
  • [17] G.W. Fraser, Nucl. Instrum. Methods Phys. Res. 195(3), 523 (1982).
  • [18] A. Baciero et al., J. Synchrotron Radiat. 7, 215 (2000).
  • [19] W. Jin et al., Nucl. Instrum. Methods Phys. Res. A 674, 15 (2012).
  • [20] L. Delgado-Aparicio et al., Rev. Sci. Instrum. 81(10), 10E303 (2010).
  • [21] T. Onchi et al., Phys. Plasmas 22(8), 14 (2015).
  • [22] M.P. Kowalski et al., Appl. Opt. 25(14), 2440 (1986).