Plasma and Fusion Research

Volume 14, 1401161 (2019)

Regular Articles


Turbulence Simulation on Zonal Flow Formations in the Presence of Parallel Flows
Makoto SASAKI1,2,3), Naohiro KASUYA1,2), Yusuke KOSUGA1,2), Tatsuya KOBAYASHI4), Takuma YAMADA2,5), Hiroyuki ARAKAWA6), Shigeru INAGAKI1,2) and Kimitaka ITOH2,4,7)
1)
Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
2)
Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580, Japan
3)
Department of Physics, Warwick University, Coventry CV4 7AL, United Kingdom
4)
National Institute for Fusion Science, Toki 509-5292, Japan
5)
Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
6)
Institute of Science and Engineering, Academic Assembly, Shimane University, Matsue 690-8504, Japan
7)
Institute of Science and Technology Research, Chubu University, Kasugai 487-8501, Japan
(Received 30 July 2019 / Accepted 12 September 2019 / Published 29 October 2019)

Abstract

It is demonstrated that the zonal flow is controlled by the parallel flow in the cylindrical plasmas. A three-dimensional turbulence simulation is performed, based on the reduced fluid model. The background parallel flow is applied by introducing the time independent parallel momentum source. Changing the magnitude of the momentum source, the behavior of the zonal flow is investigated. The drift wave turbulence is affected by the parallel flow, and it shows the spatial competition between turbulence modes. The spatial competition appears/disappears abruptly, depending on the intensity of the parallel momentum source. As a consequence of the transition between the turbulence state, the radial profile of the turbulence drastically changes, which leads to the change of the turbulence force to drive the zonal flow. In this way, the parallel flow indirectly affects the zonal flow through the deformation of the turbulence.


Keywords

zonal flow, parallel flow, drift wave, turbulence competition, Reynolds force

DOI: 10.1585/pfr.14.1401161


References

  • [1] P.H. Diamond et al., Plasma Phys. Control. Fusion 47, R35 (2005).
  • [2] P.H. Diamond et al., Plasma Phys. 3, 1626 (1991).
  • [3] S.-I. Itoh et al., Phys. Rev. Lett. 60, 2276 (1988).
  • [4] H. Biglari et al., Plasma Phys. 2, 1 (1990).
  • [5] K. Itoh et al., Plasma Phys. Control. Fusion 57, 075008 (2015).
  • [6] M. Sasaki et al., Phys. Plasmas 25, 012316 (2018).
  • [7] K. Kamiya et al., Plasma Phys. Control. Fusion 60, 014023 (2017).
  • [8] T. Kobayashi et al., Sci. Rep. 7, 14971 (2017).
  • [9] R. Betti et al., Phys. Rev. Lett. 74, 2949 (1995).
  • [10] O.D. Gurcan et al., Phys. Plasmas 14, 042306 (2007).
  • [11] P.H. Diamond et al., Nucl. Fusion 53, 104019 (2013).
  • [12] M. Sasaki et al., Nucl. Fusion 57, 036025 (2017).
  • [13] K. Itoh et al., Plasma Phys. Control. Fusion 38, 1 (1996).
  • [14] K. Hallatschek, Plasma Phys. Control. Fusion 49, B137 (2007).
  • [15] M. Sasaki et al., Nucl. Fusion 59, 066039 (2019).
  • [16] N. D'Angelo, Phys. Fluids 8, 1748 (1965).
  • [17] P.J. Catto et al., Phys. Fluids 23, 1719 (1973).
  • [18] M. Barnes et al., Phys. Rev. Lett. 106, 175004 (2011).
  • [19] Y. Camenen et al., Phys. Plasmas 23, 022507 (2016).
  • [20] T.T. Tran et al., Plasma Phys. Control. Fusion 61, 065002 (2019).
  • [21] J. Ball et al., Plasma Phys. Control. Fusion 61, 064004 (2019).
  • [22] X. Garbet et al., Phys. Plasmas 6, 3955 (1999).
  • [23] Y. Kosuga et al., Phys. Plasmas 24, 032304 (2017).
  • [24] Y. Kosuga et al., Phys. Plasmas 25, 100701 (2018).
  • [25] M. Sasaki et al., Phys. Plasmas 24, 112103 (2017).
  • [26] M. Sasaki et al., Plasma Fusion Res. 12, 1401042 (2017).
  • [27] Y. Kosuga et al., Plasma Fusion Res. 10, 3401024 (2015).