Plasma and Fusion Research

Volume 13, 3405064 (2018)

Regular Articles


Development of Rapid Sampling System of Atmospheric Water Vapor for Tritium Measurement
Naofumi AKATA1,2), Hideki KAKIUCHI3), Masahiro TANAKA1,2), Nagayoshi SHIMA4), Yoshitaka SHIROMA5), Shinji TOKONAMI5), Masahiro HOSODA5), Yoshio ISHIKAWA3), Masahide FURUKAWA6) and Tetsuya SANADA7)
1)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
2)
SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292, Japan
3)
Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212, Japan
4)
Kyushu Environmental Evaluation Association, 1-10-1 Matsukadai, Higashi-ku, Fukuoka 813-0004, Japan
5)
Hirosaki University, 66-1 Honcho, Hirosaki, Aomori 036-8564, Japan
6)
University of Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
7)
Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
(Received 24 December 2017 / Accepted 19 April 2018 / Published 12 June 2018)

Abstract

We have developed a rapid sampling system for measuring the tritium in atmospheric water vapor. The system consists of a high-efficiency particulate air filter cartridge, an oil-free compressor, a water-vapor-separating module with hollow fiber membranes, two cold traps, and an oil-free rotary pump. Compressed air (0.4 - 0.7 MPa) is introduced into the water-vapor-separation module, which consists of a stainless steel column containing polyimide membrane tubes. Water vapor permeates through the tubes and is collected by cold traps cooled with dry ice and ethanol. The module is heated with a flexible heater to control its temperature. We have determined the recovery yields under various sampling conditions and find that this system can collect atmospheric water vapor with a recovery yield of > 99 %. This system can thus be a useful tool for understanding short-term observations of tritium in atmospheric water vapor.


Keywords

tritium, water vapor, atmospheric environment, rapid-sampling system, short term

DOI: 10.1585/pfr.13.3405064


References

  • [1] S. Okada and N. Momoshima, Health Phys. 65, 595 (1993).
  • [2] UNSCEAR, UNSCEAR 2008 Report, Volume I (2010).
  • [3] T. Uda and M. Tanaka, J. Plasma Fusion Res. 85, 423 (2009).
  • [4] M. Tanaka and T. Uda, Radiat. Prot. Dosim. 167, 187 (2015).
  • [5] H. Morishima, H. Kawai, T. Koga and T. Niwa, J. Radiat. Res. 26, 283 (1985).
  • [6] Y. Zhang, S. Ye and J. Wu, Hydrol. Process. 25, 2379 (2011).
  • [7] P.A. Harms, A. Visser, J.E. Moran and B.K. Esser, J. Hydrol. 534, 63 (2016).
  • [8] M. Sawan and M. Abdou, Fusion Eng. Des. 81, 1131 (2006).
  • [9] N. Akata, H. Kakiuchi, N. Shima, T. Iyogi, N. Momoshima and S. Hisamatsu, J. Environ. Radioact. 102, 837 (2011).
  • [10] ICRP, ICRP Publication 119 (2012).
  • [11] D. Labrune, B. Limacher, H. Guidon and G. Moll, Fusion Technol. 28, 676 (1995).
  • [12] T. Hayashi, K. Okuno, T. Ishida, M. Yamada and T. Suzuki, Fusion Eng. Des. 39-40, 901 (1998).
  • [13] T. Sugiyama, N. Miyahara, M. Tanaka, K. Munakata and I. Yamamoto, Fusion Eng. Des. 86, 2743 (2011).
  • [14] T. Sugiyama, M. Tanaka, K. Munakata and I. Yamamoto, Fusion Eng. Des. 87, 1181 (2012).
  • [15] N. Tanihara, S. Nakanishi and T. Yoshinaga, J. Jpn. Petrol. Inst. 59, 276 (2016).
  • [16] A. Nakamura and H. Makino, MEMBRANE 12, 293 (1987).
  • [17] S. Nakanishi and Y. Kusuki, Sen'i Gakkaishi 52, 55 (1995).
  • [18] A. Cauquoin, P.J. Baptiste, C. Risi, E. Fourre, B. Stenni and A. Landais, Earth Planet. Sci. Lett. 427, 160 (2015).
  • [19] N. Momoshima, T. Okai, T. Kaji and Y. Takashima, Radiochim. Acta 54, 129 (1991).
  • [20] S. Sugihara, A. Hirose, N. Momoshima and Y. Maeda, Fusion Sci. Technol. 54, 289 (2008).