Plasma and Fusion Research

Volume 13, 3405048 (2018)

Regular Articles


Development of the Tritium Transport Model for Pebbles of Li2TiO3
Makoto KOBAYASHI and Yasuhisa OYA1)
National Institute for Fusion Science, National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292, Japan
1)
Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
(Received 17 December 2017 / Accepted 4 April 2018 / Published 10 May 2018)

Abstract

Tritium transport code in Li2TiO3 pebbles were developed in this study. In the simulation code, tritium transports in a grain, a closed-pore and an opened-pore were modeled and combined. The tritium transport in grain was modeled by the tritium diffusion, trapping/detrapping by defects, and the annihilation process of defects. The adsorption/desorption equilibrium of diffusing tritium gas molecule was modeled for the tritium transports in opened-pores. A vacant-core and shell model was used to model the tritium transport in closed-pores. The results by simulation code suggested that the tritium trapping by closed-pores would result in the shift of tritium release toward higher temperature side as dissociation of tritium gas molecule in closed-pores requires higher activation energy.


Keywords

tritium, thermal desorption spectroscopy, opened-pore, closed-pore, Knudsen diffusion

DOI: 10.1585/pfr.13.3405048


References

  • [1] S. Ohira et al., J. Nucl. Mater. 138, 235 (1986).
  • [2] T. Tanifuji et al., J. Nucl. Mater. 283-287, 1419 (2000).
  • [3] K. Okuno and H. Kudo, Fusion Eng. Des. 8, 355 (1989).
  • [4] M. Kobayashi et al., J. Nucl. Mater. 458, 22 (2015).
  • [5] S-J. Lee et al., Fusion Eng. Des. 88, 3091 (2013).
  • [6] Q. Zhou et al., Fusion Eng. Des. 100, 166 (2015).
  • [7] T. Hoshino et al., Fusion Eng. Des. 109-111, 1114 (2016).
  • [8] K. Katayama et al., Fusion Eng. Des. 87, 927 (2012).
  • [9] M. Kobayashi et al., J. Nucl. Mater. 447, 1 (2014).
  • [10] P.F. Zito et al., J. Memb. Sci. 523, 456 (2017).
  • [11] N. Dongari et al., Int. J. Heat Mass Transf. 55, 4352 (2012).
  • [12] M. Olea and Y. Iwasawa, Appl. Catal. A-Gen. 275, 35 (2004).
  • [13] J.B. Hasted, Liquid Water: Dielectric Properties (Plenum Press, New York, 1972).
  • [14] K.M. Feng et al., Fusion Eng. Des. 89, 1119 (2014).
  • [15] H. Chen et al., Fusion Eng. Des. 96-97, 89 (2015).
  • [16] S. Nakaye and H. Sugimoto, Vacuum 125, 154 (2016).
  • [17] T. Kawagoe et al., J. Nucl. Mater. 297, 27 (2001).
  • [18] K. Tsuchiya et al., J. Nucl. Mater. 329-333, 1248 (2004).
  • [19] P. Gierszewski et al., Fusion Eng. Des. 39-40, 739 (1998).
  • [20] T. Kinjo et al., Fusion Eng. Des. 83, 580 (2008).
  • [21] K. Munakata et al., Fusion Eng. Des. 75-79, 673 (2005).