Plasma and Fusion Research

Volume 13, 3403123 (2018)

Regular Articles


Configuration Property of the Chinese First Quasi-Axisymmetric Stellarator
Akihiro SHIMIZU1), Haifeng LIU2), Mitsutaka ISOBE1,3), Shoichi OKAMURA1), Shin NISHIMURA1), Chihiro SUZUKI1), Yuhong XU2), Xin ZHANG2), Bing LIU2), Jie HUANG2), Xiangqu WANG2), Hai LIU2), Changjian TANG2,4) and CFQS team1,2)
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
2)
Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
3)
SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292, Japan
4)
School of Physical Science and Technology, Sichuan University, Chengdu 610041, China
(Received 11 January 2018 / Accepted 7 October 2018 / Published 4 December 2018)

Abstract

The Chinese First Quasi-axisymmetric Stellarator (CFQS) is a new quasi-axisymmetric experimental device planned for construction at South West Jiaotong University (SWJTU), China. This is a joint project of the National Institute for Fusion Science (NIFS) and the SWJTU. The present paper discusses the equilibrium configuration of the CFQS with a major radius of 1.0m, a toroidal magnetic field strength of 1.0 T, and an aspect ratio of 4.0. As the CFQS is a quasi-axisymmetric stellarator, a tokamak-like bootstrap current is expected. The magnitude of the bootstrap current was estimated by BOOTSJ code. Next, the effects of the bootstrap current on the quasi-axisymmetric property and the neoclassical diffusion coefficient were estimated. The bootstrap current little affected the quasi-axisymmetric property, and a good neoclassical transport property was maintained.


Keywords

quasi-axisymmetric stellarator, modular coils, low aspect ratio, optimized, CFQS, CHS-qa

DOI: 10.1585/pfr.13.3403123


References

  • [1] F.S.B. Anderson et al., Trans. Fusion Tech. 27, 273 (1995).
  • [2] D.T. Anderson et al., J. Plasma Fusion Res. SERIES 1, 49 (1998).
  • [3] T. Klinger, A. Alonso, S. Bozhenkov et al., Plasma Phys. Control. Fusion 59, 014018 (2017).
  • [4] A.H. Boozer, Phys. Fluids 24, 1999 (1981).
  • [5] A.H. Boozer, Phys. Fluids 23, 904 (1980).
  • [6] S. Okamura, K. Matsuoka, S. Nishimura, M. Isobe et al., Nucl. Fusion 41, 1865 (2001).
  • [7] J. Nuhrenberg and R. Zille, Phys. Lett. A 129, 113 (1988).
  • [8] P. Garabedian, Phys. Plasmas 3, 2483 (1996).
  • [9] M. Dravlak, Fusion Technol. 33, 106 (1998).
  • [10] P. Merkel, Nucl. Fusion 27, 867 (1987).
  • [11] H. Liu et al., Plasma Fusion Res. 13, 3405067 (2018).
  • [12] S.P. Hirshman and J.C. Whitson, Phys. Fluids 26, 3553 (1983).
  • [13] U. Stroth, M. Murakami, R.A. Dory et al., Nucl. Fusion 36, 1063 (1996).
  • [14] M. Isobe, S. Okamura, N. Nakajima et al., J. Plasma Fusion Res. SERIES 5, 360 (2002).
  • [15] K.C. Shaing et al., Phys. Fluids B1, 148 (1989).
  • [16] V.V. Nemov, S.V. Kasilov et al., Phys. Plasmas 6, 4622 (1999).
  • [17] K. Matsuoka et al., 12th Int. Conf. Plasma Phys. and Control. Nucl. Fusion Research, Nice, 1988 (IAEA, Vienna) Vol.2, p.411 (1988).
  • [18] G.Y. Fu, W.A. Cooper, R. Gruber et al., Phys. Fluids B4, 1401 (1992).