Plasma and Fusion Research

Volume 13, 3403080 (2018)

Regular Articles


Investigation of E-Divertor Plasma during Simultaneous Injection of Hydrogen and Impurity Gases into GAMMA 10/PDX by Using the LINDA Code
Md. Shahinul ISLAM, Yousuke NAKASHIMA, Akiyoshi HATAYAMA1), Kazuya ICHIMURA2), Takaaki IIJIMA, Md. Maidul ISLAM, Takayuki YOKODO, Guanyi LEE, Tsubasa YOSHIMOTO, Sotaro YAMASHITA, Naomichi EZUMI and Mizuki SAKAMOTO
Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
1)
Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522, Japan
2)
Graduate School of Engineering, Kobe University, Kobe, Hyogo 657-8501, Japan
(Received 26 December 2017 / Accepted 21 May 2018 / Published 25 June 2018)

Abstract

This paper describes the behavior of plasma parameters in the E-divertor region of GAMMA 10/PDX numerically by using the multi-fluid code (LINDA) during injection of hydrogen (H) and Argon (Ar). A remarkable reduction in the electron temperature (Te) has been recognized due to Ar injection. For only Ar 6.0 × 1017 m−3 injection, Te on the target plate decreases to nearly 10 eV. Te also reduces according to the increment of H injection. The ion temperature (Ti) on the target plate also decreases according to the increment of injected H neutral density. A tendency of saturation in the particle flux and the electron density is observed at the higher H injection in the case of simultaneous injection of H and Ar. The charge exchange loss enhances significantly during H injection. The radiation power loss also enhances for Ar injection.


Keywords

GAMMA 10/PDX, E-Divertor, LINDA code, Ar injection, hydrogen injection, plasma detachment

DOI: 10.1585/pfr.13.3403080


References

  • [1] P.C. Stangeby, Plasma Phys. Control. Fusion 43, 223 (2000).
  • [2] A. Loarte et al., Nucl. Fusion 47, S203 (2007).
  • [3] S.I. Krasheninkov et al., Phys. Plasma 23, 055602 (2016).
  • [4] N. Ohno, Plasma Phys. Control. Fusion 59, 034007 (2017).
  • [5] Y. Nakashima et al., Nucl. Fusion 57, 116033 (2017).
  • [6] M.S. Islam et al., Plasma Fusion Res. 11, 2402042 (2016).
  • [7] Y. Nakashima et al., J. Nucl. Mater. 463, 537 (2015).
  • [8] B.J. Braams, NET Rep. 68 EURFU/X-80/87/68, CEC, Brussels (1987).
  • [9] R. Schneider et al., Contrib. Plasma Phys. 46, 3 (2006).
  • [10] M.S. Islam et al., Fusion Eng. Des. 125, 216 (2017).
  • [11] M.S. Islam et al., Plasma Phys. Control. Fusion 59, 125010 (2017).
  • [12] D.E. Post et al., J. Nucl. Mater. 220, 143 (1995).
  • [13] Y. Hahn, Rep. Prog. Phys. 60, 691 (1997).
  • [14] K. Hoshino et al., Plasma Fusion Res. 12, 1405023 (2017).
  • [15] X.J. Liu et al., Phys. Plasmas 24, 122509 (2017).
  • [16] X. Bonnin et al., Nucl. Mater. Energy 12, 1100 (2017).
  • [17] Y. Feng, Plasma Phys. Control. Fusion 59, 034006 (2017).
  • [18] G. Kawamura et al., Plasma Fusion Res. 5, S1020 (2010).
  • [19] K. Miyamoto et al., J. Phys. Soc. Jpn. 76, 034501 (2007).