Plasma and Fusion Research

Volume 13, 3403040 (2018)

Regular Articles


Evaluation of Measurement Signal of Heavy Ion Beam Probe of Energetic-Particle Driven Geodesic Acoustic Modes
Makoto SASAKI1,2), Kimitaka ITOH2,3), Takeshi IDO4), Akihiro SHIMIZU4), Tatsuya KOBAYASHI4), Hiroyuki ARAKAWA5), Naohiro KASUYA1,2), Akihide FUJISAWA1,2) and Sanae-I. ITOH1,2)
1)
Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
2)
Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580, Japan
3)
Institute of Science and Technology Research, Chubu University, Kasugai 487-8501, Japan
4)
National Institute for Fusion Science, Toki 509-5292, Japan
5)
Teikyo University, Fukuoka 836-8505, Japan
(Received 23 December 2017 / Accepted 30 March 2018 / Published 22 May 2018)

Abstract

In order to observe spatial profiles of energetic particle driven modes, measurement signal of Heavy Ion Beam Probe (HIBP) is formulated theoretically, focusing on effects of the fast ion density fluctuation and attenuation of the injected beam (line-integral effect). Obtained formula is applied to the density fluctuation measurement of energetic-particle driven geodesic acoustic modes (EGAMs). Intensity of the fluctuation obtained by the HIBP can be up-down asymmetric in the poloidal cross-section due to the effect of the fast ion density fluctuation, when the electron loss cross-section of HIBP due to fast ions is comparable to that due to electrons. A possibility to measure the fast ion density by HIBP is discussed, and the experimental guideline for the specification of the resonance which drives the EGAM is presented.


Keywords

EGAM, spatial structure, HIBP, EP driven mode

DOI: 10.1585/pfr.13.3403040


References

  • [1] Y. Todo et al., Phys. Plasma 24, 081203 (2017).
  • [2] N. Gorelenkov et al., Nucl. Fusion 54, 125001 (2014).
  • [3] N.J. Fisch and J.M. Rax, Phys. Rev. Lett. 69, 612 (1992).
  • [4] M. Sasaki, K. Itoh and S.-I. Itoh, Plasma Phys. Control. Fusion 53, 085017 (2011).
  • [5] M. Sasaki et al., Scientific Reports 7, 16767 (2017).
  • [6] D. Zarzoso et al., Phys. Rev. Lett. 110, 125002 (2013).
  • [7] M. Sasaki et al., Nucl. Fusion 57, 036025 (2017).
  • [8] M. Sasaki et al., Phys. Plasmas 23, 102501 (2016).
  • [9] A. Shimizu et al., Plasma Fusion Res. 11, 2402123 (2016).
  • [10] G.A. Hallock, A.J. Wootton and R.L. Hickok, Phys. Rev. Lett. 59, 1301 (1987).
  • [11] Ch. P. Ritz et al., Phys. Rev. Lett. 62, 3099 (1989).
  • [12] A. Fujisawa et al., Phys. Rev. Lett. 93, 165002 (2004).
  • [13] T. Ido et al., Plasma Phys. Control. Fusion 48, S41 (2006).
  • [14] T. Kobayashi et al., Phys. Rev. Lett. 111, 035002 (2013).
  • [15] T. Ido et al., and the LHD Experiment Group, Phys. Rev. Lett. 116, 015002 (2016).
  • [16] T. Ido et al., Nucl. Fusion 55, 083024 (2015).
  • [17] T. Ido et al., IAEA FEC, EX/P8-13 (2016).
  • [18] D.W. Ross et al., Rev. Sci. Instrum. 63, 2232 (1992).
  • [19] N. Kasuya et al., Plasma Sci. Technol. 13, 326 (2011).
  • [20] M. Nishiura et al., Plasma Fusion Res. 2, S1099 (2007).
  • [21] G.Y. Fu, Phys. Rev. Lett. 101, 185002 (2008).
  • [22] M. Sasaki et al., Phys. Plasmas 23, 102501 (2016).
  • [23] NIFS database for the atomic and molecular process: http://dbshino.nifs.ac.jp/nifsdb/amdis_ion/top