Plasma and Fusion Research

Volume 13, 3402109 (2018)

Regular Articles


GAM and Broadband Turbulence Structure in OH and ECRH Plasmas in the T-10 Tokamak
Alexander V. MELNIKOV1,2), Leonid G. ELISEEV1), Sergey A. GRASHIN1), Mikhail A. DRABINSKIJ1,3), Philipp O. KHABANOV1,3), Nickolay K. KHARCHEV1), Ludmila I. KRUPNIK4), Alexander S. KOZACHEK4), Sergey E. LYSENKO1), Vitaly N. ZENIN1,3) and HIBP Team4)
1)
National Research Centre ‘Kurchatov Institute’, Moscow, Russia
2)
National Research Nuclear University MEPhI, Moscow, Russia
3)
Moscow Institute of Physics and Technology, Dolgoprudny, Russia
4)
Institute of Plasma Physics, KIPT, Kharkov, Ukraine
(Received 28 December 2017 / Accepted 4 July 2018 / Published 25 September 2018)

Abstract

Zonal flows and their high-frequency counterpart, the geodesic acoustic modes (GAMs) are considered as a possible mechanism of the plasma turbulence self-regulation. In the T-10 tokamak, GAM and broadband (< 200 kHz) turbulence of plasma potential and density have been directly studied by heavy ion beam probing from the plasma core to the edge. Regimes with Ohmic and auxiliary electron cyclotron resonance heating (ECRH) were studied (Bt = 1.7 - 2.4 T, Ip = 140 - 250 kA, ne = (0.6 - 3) × 1019 m−3, PEC ≤ 1.2 MW) for the plasma with tungsten rail limiter. GAMs are more pronounced during ECRH, when the typical frequencies fGAM were in the band 22 - 27 kHz for the main frequency peak and 25 - 30 kHz for the higher frequency satellite. Both GAM and satellite have uniform structure with constant frequencies over a wide radial extension, exhibiting the features of plasma eigenmodes. The main GAM peak has wider outer bound at the plasma edge than satellite. fGAM follows the theoretical expectation fGAM ∼ √T/mi /R (for electron temperature at r/a = 0.7) for both OH and ECRH regimes in the wide temperature area, covering the whole operational limit of T-10. At the plasma periphery, the quasicoherent electrostatic mode with frequency 50 - 120 kHz coexists with GAM and satellite.


Keywords

tokamak, electric potential, geodesic acoustic modes, broadband turbulence, heavy ion beam probe, quasi-coherent mode

DOI: 10.1585/pfr.13.3402109


References

  • [1] P. Diamond et al., Plasma Phys. Control. Fusion 47, R35 (2005).
  • [2] N. Winsor et al., Phys. Fluids 11, 2448 (1968).
  • [3] A. Fujisawa et al., Nucl. Fusion 47, S718 (2007).
  • [4] A.V. Melnikov et al., Plasma Phys. Control. Fusion 48, S87 (2006).
  • [5] J. Seidl et al., Nucl. Fusion 57, 126048 (2017).
  • [6] D. Basu et al., Nucl. Fusion 58, 024001 (2018).
  • [7] G.D. Convey et al., Plasma Phys. Control. Fusion 50, 055009 (2008).
  • [8] T. Ido et al., Plasma Phys. Control. Fusion 48, S41 (2006).
  • [9] A.V. Melnikov et al., Nucl. Fusion 55, 063001 (2015).
  • [10] A.D. Gurchenko et al., Plasma Phys. Control. Fusion 55, 085017 (2013).
  • [11] A.V. Melnikov et al., JETP Letters 100, 555 (2014).
  • [12] A.V. Melnikov et al., Rev. Sci. Instrum. 66, 317 (1995).
  • [13] A.V. Melnikov et al., Czech. J. Phys. 55, 349 (2005).
  • [14] V.A. Vershkov et al., Nucl. Fusion 45, S203 (2005).
  • [15] V.A. Vershkov et al., Nucl. Fusion 57, 102017 (2017).
  • [16] V.A. Krupin et al., Nucl. Fusion 57, 066041 (2017).
  • [17] M.A. Drabinskij et al., J. Phys.: Conf. Series 747, 012017 (2016).
  • [18] A.V. Melnikov et al., Nucl. Fusion 57, 072004 (2017).
  • [19] L.G. Eliseev et al., J. Phys.: Conf. Series 907, 012002 (2017).
  • [20] D.W. Ross et al., Rev. Sci. Instrum. 63, 2232 (1992).
  • [21] L.A. Klyuchnikov et al., Rev. Sci. Instrum. 87, 053506 (2016).