Plasma and Fusion Research

Volume 13, 3402059 (2018)

Regular Articles


TSC Simulation of Transient CHI in New Electrode Configuration on QUEST
Kengoh KURODA, Roger RAMAN1), Stephen C. JARDIN2), Masayuki ONO2) and Kazuaki HANADA
Kyushu University, Kasuga, Fukuoka 816-8580, Japan
1)
University of Washington, Seattle, WA, 98195, USA
2)
Princeton Plasma Physics Laboratory, Princeton, NJ, 08543, USA
(Received 27 December 2017 / Accepted 15 April 2018 / Published 22 May 2018)

Abstract

In QUEST, transient Coaxial Helicity Injection (CHI) has now been implemented using a new electrode configuration in which the CHI insulator is not part of the vacuum boundary. In this paper, for the first time, suitable conditions for generation of the CHI-produced toroidal current in the QUEST vessel configuration were investigated using the Tokamak Simulation Code (TSC). The simulation results show that the configuration in which the biased electrode is located farther away from the injector flux coil requires higher currents in the injector coil to generate the required injector flux. Additionally, energizing a lower inboard poloidal field coil and possibly lowering the electrode plate closer to the injector flux coil may be necessary to improve injector flux shaping to permit a configuration that is more favorable for inducing flux closure.


Keywords

CHI, TSC, non-inductive current drive, spherical tokamak, ECH

DOI: 10.1585/pfr.13.3402059


References

  • [1] R. Raman et al., Phys. Rev. Lett. 90, 075005 (2003).
  • [2] R. Raman et al., Phys. Plasmas 18, 092504 (2011).
  • [3] K. Hanada et al., Plasma. Fusion. Res. 5, S1007 (2010).
  • [4] K. Hanada et al., Nucl. Fusion 57, 126061 (2017).
  • [5] K. Kuroda et al., Plasma Fusion Res. 12, 1202020 (2017).
  • [6] R. Raman et al., Fusion Sci. Technol. 68, 674 (2015).
  • [7] R. Raman et al., Nucl. Fusion 53, 073017 (2013).
  • [8] H. Idei et al., Nucl. Fusion 57, 126045 (2017).
  • [9] S.C. Jardin, N. Pomphrey and J. Delucia, J. Comput. Phys. 66, 481 (1986).
  • [10] S.C. Jardin et al., Nucl. Fusion 33, 371 (1993).
  • [11] R. Raman et al., Nucl. Fusion 51, 113018 (2011).
  • [12] F. Ebrahimi and R. Raman, Nucl. Fusion 56, 044002 (2016).
  • [13] F. Ebrahimi and R. Raman, Phys. Rev. Lett. 114, 205003 (2015).
  • [14] T.R. Jarboe, Fusion Sci. Technol. 15, 7 (1989).