Plasma and Fusion Research

Volume 13, 3402058 (2018)

Regular Articles

Measurements of the Impurity Flow Velocity and Temperature in Deuterium and Hydrogen Plasmas in the Divertor Legs of the Stochastic Layer in LHD
Arseniy KUZMIN, Masahiro KOBAYASHI, Tomohide NAKANO1), Masahiro HASUO2), Keisuke FUJII2), Motoshi GOTO, Taiichi SHIKAMA2), Tomohiro MORISAKI and the LHD Experiment Group
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5293, Japan
National Institutes for Quantum and Radiological Science and Technology, Naka Fusion Institute, 801-1 Mukoyama, Naka-shi, Ibaraki 311-0193, Japan
Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 614-8540, Japan
(Received 26 December 2017 / Accepted 17 April 2018 / Published 12 June 2018)


This paper presents carbon impurity flow velocity and temperature measurements in the divertor region for a wide density range ne = (1 - 14) × 1019 m−3, central electron temperature Te = 1.5 - 3.5 keV, and with total neutral beam injection power of 9 - 12 MW. The isotope effect on the transport is studied in hydrogen (H) and deuterium (D) discharges. Flow velocities for D plasma are systematically slower, by the factor of 1.4 - 2, compared to H plasma. For all selected discharges, the carbon ions flow toward the divertor in both H and D plasmas. Different velocities are obtained depending on the charge states. For C+ and C2+ they are in the range of 10 - 30 km/s, and 5 - 20 km/s for C3+ ions. It is also found that there is no change of flow direction even in the lowest density, where the impurity transport model predicts flow toward upstream in the thermal force dominant regime. In H discharges velocities increase proportionally to the plasma density, while in D discharges this dependency is weaker. Possible mechanism to interpret these observations is discussed based on the parallel momentum balance of impurity transport.


impurity, transport, isotope effect, carbon, deuterium, hydrogen, Echelle spectroscopy

DOI: 10.1585/pfr.13.3402058


  • [1] E.J. Doyle, W.A. Houlberg, Y. Kamada et al., Nucl. Fusion 47, S18-127 (2007).
  • [2] P. Helander, S.L. Newton, A. Mollén et al., Phys. Rev. Lett. 118, 155002 (2017).
  • [3] M. Kobayashi, S. Morita, C.F. Dong et al., Nucl. Fusion 53, 033011 (2013).
  • [4] S. Dai, M. Kobayashi, G. Kawamura et al., Nucl. Fusion 56, 06605 (2016).
  • [5] T. Oishi, S. Morita et al., Nucl. Fusion 58, 016040 (2018).
  • [6] T. Nakano, H. Kubo, N. Asakura et al., Nucl. Fusion 47, 1458 (2007).
  • [7] M. Goto, J. Quant. Spectrosc. Radiat. Transf. 76, 331 (2003).
  • [8] T. Shikama et al., Plasma Fusion Res. 2, S1045 (2007).
  • [9] P. Stangeby, The plasma boundary of magnetic fusion devices (IOP Publishing, Bristol and Philadelphia, 2000), p. 298.
  • [10] D. Reiser, D. Reiter and M.Z. Tokar, Nucl. Fusion 38, 165, (1998).
  • [11] K. Shimizu, T. Takizuka, K. Ohya et al., Nucl. Fusion 49, 065028 (2009).