Plasma and Fusion Research

Volume 13, 2404066 (2018)

Regular Articles


Measurements of Neutrons from Photonuclear Reactions Using Laser Compton Scattering Gamma Rays
Shuji MIYAMOTO, Akinori TAKEMOTO, Masashi YAMAGUCHI, Kento SUGITA, Satoshi HASHIMOTO and Sho AMANO
Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Hyogo 678-1205, Japan
(Received 10 August 2017 / Accepted 2 December 2017 / Published 15 June 2018)

Abstract

The laser Compton scattering gamma ray beamline at the synchrotron light facility NewSUBARU supplies a quasi-monochromatic, polarized, high-energy photon beam. A gamma ray flux of more than 107 photons/s is generated at a photon energy range of 1 - 73 MeV. Emission distributions of the fast neutrons generated from different target materials were measured as a function of the polarization angle of the linear polarized gamma-ray beam using a time-of-flight method with fast plastic scintillators. The neutron distributions were consistent with a previous theoretical result. The relatively slow neutrons were measured via an activation method. The result demonstrated the small anisotropy of the slow neutron emission.


Keywords

neutron, gamma ray, laser Compton scattering, photonuclear reaction, electron storage ring, synchrotron light, time-of-flight, activation

DOI: 10.1585/pfr.13.2404066


References

  • [1] A. Ando et al., J. Synchrotron Radiat. 5, 342 (1998).
  • [2] S. Miyamoto et al., Radiat. Meas. 41, S179 (2007).
  • [3] S. Amano et al., Nucl. Instrum. Methods Phys. Res. A 602, Issue 2, 337 (2009).
  • [4] K. Horikawa, S. Miyamoto, S. Amano and T. Mochizuki, Nucl. Instrum. Methods Phys. Res. A 618, 209 (2010).
  • [5] S. Miyamoto, Rev. Laser Eng. 41, 917 (2013).
  • [6] H. Utsunomiya, S. Hashimoto and S. Miyamoto, Nucl. Phys. News 25, Issue 3, 25 (2015).
  • [7] D. Li et al., J. Nucl. Sci. Technol. 46, 831 (2009).
  • [8] K. Horikawa et al., Rev. Laser Eng. 39, 445 (2011).
  • [9] T. Hayakawa, S. Miyamoto, R. Hajima, T. Shizuma, S. Amano, S. Hashimoto and T. Misawa, J. Nucl. Sci. Technol. 53, 2064 (2016).
  • [10] H. Ejiri, T. Shima, S. Miyamoto, K. Horikawa, Y. Kitagawa, Y. Asano, S. Date' and Y. Ohashi, J. Phys. Soc. Jpn. 80, 094202 (2011).
  • [11] M. Fujiwara, K. Nakai, N. Takahashi, T. Hayakawa, T. Shizuma, S. Miyamoto, G.T. Fan, A. Takemoto, M. Yamaguchi and M. Nishimura, Phys. Part. Nuclei 48, 124 (2017).
  • [12] K. Horikawa, S. Miyamoto, T. Mochizuki, S. Amano, D. Li, K. Imasaki, Y. Izawa, K. Ogata, S. Chiba and T. Hayakawa, Phys. Lett. B 737, 109 (2014).
  • [13] D.M. Filipescu, I. Gheorghe, H. Utsunomiya, S. Goriely, T. Renstrøm, H.-T. Nyhus, O. Tesileanu, T. Glodariu, T. Shima, K. Takahisa, S. Miyamoto, Y.-W. Lui, S. Hilaire, S. Pe'ru, M. Martini and A.J. Koning, Phys. Rev. C 90, 064616 (2014).
  • [14] H. Utsunomiya, S. Katayama, I. Gheorghe, S. Imai, H. Yamaguchi, D. Kahl, Y. Sakaguchi, T. Shima, K. Takahisa and S. Miyamoto, Phys. Rev. C 92, 064323 (2015).
  • [15] T. Hayakawa, T. Shizuma, S. Miyamoto, S. Amano, A. Takemoto, M. Yamaguchi, K. Horikawa, H. Akimune, K. Ogata and M. Fujiwara, Phys. Rev. C 93, 004313 (2016).
  • [16] T. Yamagata, S. Nakayama, H. Akimune and S. Miyamoto, Phys. Rev. C 95, 044307 (2017).
  • [17] T. Shima, Y. Nagai, S. Miyamoto, S. Amano, K. Horikawa, T. Mochizuki, H. Utsunomiya and H. Akimune, AIP Conf. Proc. 1235, 315 (2010).
  • [18] D. Li, K. Imasaki, S. Miyamoto, K. Horikawa, S. Amano and T. Mochizuki, Appl. Phys. Lett. 94, 091112 (2009).
  • [19] F. Hori, Y. Ueno, K. Ishii, T. Ishiyama, A. Iwase, S. Miyamoto and M. Terasawa, J. Phys.: Conf. Series 674, 012025 (2016).
  • [20] S. Wang, D. Bernard, S. Amano, S. Hashimoto, S. Miyamoto et al., J. Phys.: Conf. Series 650, 012016 (2015).
  • [21] S. Miyamoto and K. Horikawa, Rev. Laser Eng. 36, 798 (2008).
  • [22] A. Agodi, Nuovo Cimento 5(1), 21 (1957).