Plasma and Fusion Research

Volume 13, 2404009 (2018)

Regular Articles


Efficient and Repetitive Neutron Generation by Double-Laser-Pulse Driven Photonuclear Reaction
Yasunobu ARIKAWA, Yusuke KATO, Yuki ABE, Shuto MATSUBARA, Hidetaka KISHIMOTO, Nozomi NAKAJIMA, Alessio MORACE, Akifumi YOGO, Hiroaki NISHIMURA, Mitsuo NAKAI, Shinsuke FUJIOKA, Hiroshi AZECHI, Kunioki MIMA1), Shunsuke INOUE2), Yoshihide NAKAMIYA2), Kensuke TERAMOTO2), Masaki HASHIDA2) and Shuji SAKABE2)
Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
1)
The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan
2)
Advanced Research Center for Beam Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
(Received 25 August 2017 / Accepted 3 December 2017 / Published 15 February 2018)

Abstract

A short and high-intensity neutron pulse can be produced efficiently by using photonuclear reactions caused by Bremsstrahlung hard X-rays in a lase-irradiated high-Z target. The efficient and repetitive neutron generation was demonstrated with the combination of 1 Hz, 0.5 J, 25 fs, 5 × 1019 W/cm2 laser pulses and a rotating tungsten disc targe. Here we applied double laser pulse irradiation scheme to increase the neutron generation efficiency. The first low-intensity laser pulse produces a lon-scale unde-critical-density plasma on the tungsten target surface prior to the second pulse irradiatio. High energy electrons above the ponderomotive scaling value are accelerated by the second hig-intensity pulse in the preformed plasm, this results in the increment of hard X-ray photons and photonuclear neutron. 3.5 × 104 neutron/pulse was obtained with optimized laser irradiation conditions.


Keywords

laser driven neutron source, high intensity laser, photonuclear reaction, relativistic electron acceleration

DOI: 10.1585/pfr.13.2404009


References

  • [1] M. Burbidge, G.R. Burbidge, W.A. Fowler and F. Hoyle, Rev. Mod. Phys. 29(4), 547 (1957).
  • [2] P. von Der Hardt and H. Rotger eds., Neutron Radiography Handbook (D. Reidel Publishing Company, Dordrecht, 1981).
  • [3] G.L. Locher, Am. J. Roentgenol. 36, 1 (1936).
  • [4] S. Nakai, K. Mima, Y. Kato, K. Tanaka, Y. Ikeda, H. Azechi, K. Miyanaga, M. Nakai, M. Perlado and R. Gonzalez Arrabal, J. Phys. Conference Series 244, Part 4 (2010).
  • [5] L.J. Perkins, B.G. Logan, M.D. Rosen, M.D. Perry, T. Diaz de la Rubia, N.M. Ghoniem, T. Ditmire, P.T. Springer and S.C. Wilks, Nucl. Fusion 40, No. 1, 1 (2000).
  • [6] O.A. Hurricane, D.A. Callahan, D.T. Casey et al., Nature 506, 343 (2014).
  • [7] C. Yamanaka and S. Nakai, Nature 319(6056), 757 (1986).
  • [8] M. Roth, D. Jung et al., Phys. Rev. Lett. 110, 044802 (2013).
  • [9] K.L. Lancaster, S. Karsch et al., Phys. Plasmas 11, 3404 (2004).
  • [10] I. Pomerantz et al., Phys. Rev. Lett. 113, 184801 (2014).
  • [11] Y. Arikawa et al., Plasma Fusion Res. 10, 2404003 (2015).
  • [12] T. Ditmire, J. Zweiback, V.P. Yanovsky, T.E. Cowan, G. Hays and K.B. Wharton, Nature 398, 492 (1999).
  • [13] K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T.Murata, H. Matsunobu, A. Zukeran, S. Kamada and J. Katakura, J. Nucl. Sci. Technol. 48(1), 1 (2011).
  • [14] S. Tokita, M. Hashida, S. Masuno, S. Namba and S. Sakabe, Optics Express 16(19), 14875 (2008).
  • [15] S.C. Wilks, W.L. Kruer, M. Tabak and A.B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).
  • [16] T. Johzaki et al., Plasma Fusion Res. 2, 041 (2007).
  • [17] Y. Arikawa et al., Nucl. Fusion 57, 066022 (2017).
  • [18] H. Sakagami et al., Laser Part. Beams 24, 191 (2006).


Publisher's Note

This article has an erratum: Yasunobu ARIKAWA et al., Plasma Fusion Res. 13, 2904019 (2018).