Plasma and Fusion Research

Volume 13, 2401028 (2018)

Regular Articles


3 × 108 D-D Neutron Generation by High-Intensity Laser Irradiation onto the Inner Surface of Spherical CD Shells
Nakahiro SATOH, Takeshi WATARI, Katsunobu NISHIHARA, Koji MATSUKADO, Ryo YOSHIMURA, Naoki AKIYAMA, Masaru TAKAGI, Toshiyuki KAWASHIMA, Yuki ABE1), Yasunobu ARIKAWA1), Atsushi SUNAHARA2), Yoichiro HIRONAKA1), Keisuke SHIGEMORI1), Shinsuke FUJIOKA1), Mitsuo NAKAI1) and Hiroshi AZECHI1)
Industries Development Laboratory, Central Research Laboratory, HAMAMATSU PHOTONICS K.K., 1820 Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan
1)
Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
2)
Institute of Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
(Received 1 June 2017 / Accepted 30 January 2018 / Published 24 April 2018)

Abstract

3 × 108 deuterium-deuterium (D-D) neutron generation per pulse was achieved with one-sided laser irradiation through an inlet hole of a deuterated polystyrene shell and a laser intensity of (2-3) × 1016 W/cm2. X-ray pinhole camera images displayed a surprisingly uniform hot core formation at the center of the shell. Neutron time-of-flight spectra were recorded at three different angles from the laser incident axis to investigate the directional dependence. The dependence of neutron yield on laser energy, shell diameter, and inlet hole diameter is also discussed. To explain the number of the observed neutrons, a simple model, based on a central expansion of two-electron-temperature (hot and cold) plasma, is presented under assumed hot and cold electron temperature. According to this model, more than 1010 neutrons per pulse, the average amount required for many industrial applications, could be generated by using a higher intensity laser.


Keywords

laser-driven neutron source, spherical shell, inner surface irradiation, two-electron-temperature plasma, neutron time-of-flight, hot core plasma, one-sided laser irradiation

DOI: 10.1585/pfr.13.2401028


References

  • [1] J. Alvarez et al., Phys. Procedia 60, 29 (2014).
  • [2] J.A. Frenje et al., Nucl. Fusion 53, 043014 (2013).
  • [3] M. Bonino et al., 22nd Target Fabrication Meeting (2017).
  • [4] H. Shiraga et al., EPJ Web of Conferences 59, 01008 (2013).
  • [5] T. Ditmire et al., Nature 398, 489 (1999).
  • [6] R. Hartke et al., Nucl. Instrum. Methods Phys. Res. A 540, 464 (2005).
  • [7] F. Buersgens et al., Phys. Rev. E 74, 016403 (2006).
  • [8] T. Watari et al., J. Phys.: Conference Series 688, 012125 (2016).
  • [9] M. Roth et al., Phys. Rev. Lett. 110, 044802 (2013).
  • [10] H. Daido et al., Appl. Phys. Lett. 51, 2195 (1987).
  • [11] N. Miyanaga et al., Proceedings of 18th International Conference on Fusion Energy (2001), IAEA-CN-77.
  • [12] M. Takagi et al., J. Vac. Sci. Technol. Jpn. A9, 2145 (1991).
  • [13] Y. Abe et al., Appl. Phys. Lett. 111, 233506 (2017).
  • [14] K.R. Manes et al., J. Opt. Soc. Am. 67, 717 (1977).
  • [15] K. Estabrook and W.L. Kruer, Phys. Rev. Lett. 40, 42 (1978).
  • [16] M. Tajiri and K. Nishihara, J. Phys. Soc. Jpn. 54, 572 (1985).
  • [17] B. Bezzerides et al., Phys. Fluids 21, 2179 (1978).