Plasma and Fusion Research

Volume 13, 1401081 (2018)

Regular Articles


Global Mode Analysis of Ion-Temperature-Gradient Instabilities Using the Gyro-Fluid Model in Linear Devices
Tomotsugu OHNO, Naohiro KASUYA1), Makoto SASAKI1) and Masatoshi YAGI2)
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
1)
Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
2)
National Institutes for Quantum and Radiological Science and Technology, 2-166 Omotedate, Obuchi, Rokkasho-mura, Aomori 039-3212, Japan
(Received 19 February 2018 / Accepted 21 May 2018 / Published 25 June 2018)

Abstract

In order to understand turbulent transport phenomena in magnetized plasmas, an excitation condition of the ion-temperature-gradient (ITG) instability is investigated in linear device PANTA. Numerical analyses using a global gyro-fluid code in linear devices are performed to obtain mode structures and parameter dependences of the ITG instability. Parameter scans of the linear growth rate show the destabilization condition of the ITG modes. The global analysis considers the boundary condition and determines the radial mode structure, which gives the values of the wavenumber in the direction perpendicular to the magnetic field. The local analysis confirms to reproduce the global analysis result by using the wavenumber obtained from the global analysis. The wavenumber is a parameter in the local model, and the global analysis of the radial mode structure is necessary for the selection of this important parameter.


Keywords

ion-temperature-gradient instability, finite-Larmor-radius effect, gyro-fluid equation, linear device, radial eigenmode structure

DOI: 10.1585/pfr.13.1401081


References

  • [1] P.H. Diamond et al., Plasma Phys. Control. Fusion 47, R35 (2005).
  • [2] G.R. Tynan, A. Fujisawa and G. McKee, Plasma Phys. Control. Fusion 51, 113001 (2009).
  • [3] T. Windisch, O. Grulke and T. Klinger, Phys. Plasmas 13, 122303 (2006).
  • [4] T. Yamada et al., Nature Phys. 4, 721 (2008).
  • [5] P. Manz, M. Xu, S.C. Thakur and G.R. Tynan, Plasma Phys. Control. Fusion 53, 095001 (2011).
  • [6] Y. Nagashima et al., Rev. Sci. Instrum. 82, 033503 (2011).
  • [7] N. Kasuya et al., Phys. Plasmas 15, 052302 (2008).
  • [8] P. Vaezi, C. Holland, S.C. Thakur and G.R. Tynan, Phys. Plasmas 24, 092310 (2017).
  • [9] W. Horton, Rev. Mod. Phys. 71, 735 (1999).
  • [10] A.K. Sen et al., Phys. Rev. Lett. 66, 429 (1991).
  • [11] N. Ezumi et al., J. Nucl. Mater. 337, 1106 (2005).
  • [12] S. Inagaki et al., Sci. Reps. 6, 22189 (2016).
  • [13] S. Hamaguchi and W. Horton, Phys. Fluids B 2, 1833 (1990).
  • [14] Y. Miwa et al., Plasma Fusion Res. 8, 2403133 (2013).
  • [15] G. Hattori et al., Plasma Fusion Res. 10, 3401060 (2015).
  • [16] W. Dorland and W. Hammet, Phys. Fluids B 5, 812 (1993).