Plasma and Fusion Research

Volume 12, 1403032 (2017)

Regular Articles


Analysis of Avalanche Runaway Generation after Disruptions with Low-Z and Noble Gas Species
Akinobu MATSUYAMA and Masatoshi YAGI
National Institutes for Quantum and Radiological Science and Technology, Rokkasho, Aomori 039-3212, Japan
(Received 22 February 2017 / Accepted 26 June 2017 / Published 7 August 2017)

Abstract

The effects of impurities on runaway electron generation are studied using a zero-dimensional disruption simulation code. For describing collisions between fast electrons and partially stripped ions, a charge-resolved expression of the Coulomb logarithm is employed. Numerical analysis of the avalanche growth rate using the adjoint Fokker-Planck method is compared with two existing semi-analytic models, showing (i) the convergence of the growth rate to strong electric field limit of the Rosenbluth-Putvinski (R-P) model and (ii) the cancellation of the effect of second-order collisional diffusion for intermediate electric fields. Using the developed current quench (CQ) simulations, the parametric study is performed with the aid of the power balance analysis, which characterizes the onset of strong avalanche amplification in the presence of low-Z and noble gas species. Thermal quench (TQ) simulations are also developed for self-consistent evaluation of hot-tail seed electrons. The deposition timescale of impurity neutrals is shown to have significant impacts on hot-tail seeds, depending non-monotonically on the pre-TQ temperature and the injected impurity density.


Keywords

runaway electron, disruption, massive gas injection, radiation, ITER

DOI: 10.1585/pfr.12.1403032


References

  • [1] M. Sugihara et al., Nucl. Fusion 47, 337 (2007).
  • [2] M. Lehnen et al., J. Nucl. Mater. 463, 39 (2015).
  • [3] E.M. Hollmann et al., Phys. Plasmas 22, 021802 (2015).
  • [4] Yu. A. Sokolov, JETP Lett. 29, 218 (1979).
  • [5] R. Jayakumar et al., Phys. Lett. A 172, 447 (1993).
  • [6] M.N. Rosenbluth and S.V. Putvinski, Nucl. Fusion 37, 1355 (1997).
  • [7] P.C. de Vries et al., Plasma Phys. Control. Fusion 54, 124032 (2012).
  • [8] C. Reux et al., J. Nucl. Mater. 463, 143 (2015).
  • [9] M.N. Rosenbluth et al., in Proceedings of the 16th International Conference on Fusion Energy, Montreal, 1996 (IAEA, Vienna, 1997), Vol. 2, p. 979.
  • [10] S.C. Chiu et al., Nucl. Fusion 38, 1711 (1998).
  • [11] R.W. Harvey et al., Phys. Plasmas 7, 4590 (2000).
  • [12] P. Helander et al., Phys. Plasmas 11, 5704 (2004).
  • [13] H. Smith et al., Phys. Plasmas 12, 122502 (2005).
  • [14] H.M. Smith and E. Verwichte, Phys. Plasmas 15, 072502 (2008).
  • [15] T. Fehér et al., Plasma Phys. Control. Fusion 53, 035014 (2011).
  • [16] A. Stahl et al., Nucl. Fusion 56, 112009 (2016).
  • [17] H. Nuga et al., Phys. Plasmas 23, 062506 (2016).
  • [18] P. Aleynikov and B.N. Breizman, Nucl. Fusion 57, 046009 (2017).
  • [19] J.R. Martín-Solís et al., in Proceedings of 37th EPS Conference on Plasma Physics (European Physical Society, Dublin, 2010), Vol. 34A, p. 4.141.
  • [20] K.O. Aleynikova et al., in Proceedings of 40th EPS Conference on Plasma Physics (European Physical Society, Espoo, 2013), Vol. 37D, European Physical Society, p. O-5.103.
  • [21] V.E. Zhogolev and S.V. Konovalov, VANT series Nuclear Fusion 37, 71 (2014).
  • [22] P. Aleynikov et al., in Proceedings of 25th IAEA Fusion Energy Conference (IAEA, St. Petersburg, 2014), pp. TH/P3-38.
  • [23] J.R. Martín-Solís et al., Phys. Plasmas 22, 092512 (2015).
  • [24] D. Mosher, Phys. Fluids 18, 846 (1975).
  • [25] P. Aleynikov and B.N. Breizman, Phys. Rev. Lett. 114, 155001 (2015).
  • [26] J.R. Martín-Solís et al., Phys. Plasmas 5, 2370 (1998).
  • [27] C.F.F. Karney and N.J. Fisch, Phys. Fluids 29, 180 (1986).
  • [28] C.F.F. Karney, Comput. Phys. Rep. 4, 183 (1986).
  • [29] C. Liu et al., Phys. Plasmas 23, 010702 (2016).
  • [30] C. Liu et al., Plasma Phys. Control. Fusion 59, 024003 (2017).
  • [31] J.R. Martín-Solís et al., Phys. Plasmas 22, 082503 (2015).
  • [32] A.H. Boozer, Nucl. Fusion 57, 056018 (2017).
  • [33] T.C. Hender et al., Nucl. Fusion 47, S128 (2007).
  • [34] J.R. Martín-Solís et al., Nucl. Fusion 57, 066025 (2017).
  • [35] A. Ashkin et al., Phys. Rev. 94, 357 (1954).
  • [36] J.W. Connor and R.J. Hastie, Nucl. Fusion 15, 415 (1975).
  • [37] M. Bakhtiari et al., Phys. Rev. Lett. 94, 215003 (2005).
  • [38] A.H. Boozer, Phys. Plasmas 22, 032504 (2015).
  • [39] P.B. Parks et al., Phys. Plasmas 6, 2523 (1999).
  • [40] H.P. Summers, Atomic Data and Analysis Structure Users Manual Report No. JET-IR 06, JET Joint Undertaking, Abingdon (1994).
  • [41] A.A. Solodov and R. Betti, Phys. Plasmas 15, 042707 (2008).
  • [42] D.O. Gericke et al., Phys. Rev. E 65, 036418 (2002).
  • [43] A.E. Kramida and J. Reader, Atom. Data Nucl. Data Tab. 92, 457 (2006).
  • [44] W.R. Leo, Techniques for Nuclear and Particle Physics Experiments (Springer-Verlag, Berlin/Heidelberg, 1994).
  • [45] M. Bakhtiari et al., Phys. Plasmas 12, 102503 (2005).
  • [46] H.W. Koch and J.W.Motz, Rev. Mod. Phys. 31, 920 (1959).
  • [47] O. Embréus et al., arXiv:1511.03917v1 [physics.plasm-ph].
  • [48] O. Embréus, A. Stahl and T. Fülöp, New. J. Phys. 18, 093023 (2016).
  • [49] G. Fussmann, Nucl. Fusion 19, 327 (1979).
  • [50] F. Andersson et al., Phys. Plasmas 8, 5221 (2001).
  • [51] G. Papp et al., Nucl. Fusion 51, 043004 (2011).
  • [52] A. Stahl et al., Phys. Rev. Lett. 114, 115002 (2015).
  • [53] I. Fernández-Gómez et al., Phys. Plasmas 19, 102504 (2012).
  • [54] G.I. Pokol et al., in Proceedings of 42th EPS Conference on Plasma Physics (European Physical Society, 2015), Vol. 39E, European Physical Society, p. P-5.169.
  • [55] J. Riemann et al., Phys. Plasmas 19, 012507 (2012).
  • [56] V.E. Lukash et al., Nucl. Fusion 47, 1476 (2007).
  • [57] H.P. Summers, Plasma Phys. Control. Fusion 48, 263 (2006).
  • [58] K. Miyamoto, Plasma Physics for Nucl. Fusion (Massachusetts Institute for Technology, Cambridge, 1989).
  • [59] M. Honda, Jpn. J. Appl. Phys. 52, 108002 (2013).
  • [60] S.P. Hirshman and D.J. Sigmar, Nucl. Fusion 21, 1079 (1981).
  • [61] M. Honda, Phys. Plasmas 21, 092508 (2014).
  • [62] P. Sandquist et al., Phys. Plasmas 13, 072108 (2006).
  • [63] Y. Kawano et al., J. Plasma Fusion Res. 81, 593 (2005).
  • [64] E.M. Hollmann et al., J. Nucl. Mater. 415, S27 (2011).
  • [65] A. Matsuyama et al., Nucl. Fusion 57, 066038 (2017).
  • [66] S.A. Bozhenkov et al., Nucl. Fusion 51, 083033 (2011).
  • [67] P.B. Parks and W. Wu, Nucl. Fusion 54, 023002 (2014).
  • [68] E. Nardon et al., Nucl. Fusion 57, 016027 (2017).
  • [69] V.A. Izzo, Phys. Plasmas 20, 056107 (2013).
  • [70] E. Nardon et al., Plasma Phys. Control. Fusion 59, 014006 (2017).
  • [71] E. Hollmann et al., Phys. Plasmas 22, 056108 (2015).