Plasma and Fusion Research

Volume 12, 1401044 (2017)

Regular Articles


Development and Verification of the Three-Dimensional Electrostatic Particle Simulation Code for the Study of Blob and Hole Propagation Dynamics
Hiroki HASEGAWA1,2) and Seiji ISHIGURO1,2)
1)
National Institute for Fusion Science (NIFS), National Institutes of Natural Sciences (NINS), Toki 509-5292, Japan
2)
Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292, Japan
(Received 31 May 2017 / Accepted 28 September 2017 / Published 13 November 2017)

Abstract

The three-dimensional (3D) electrostatic particle-in-cell (PIC) simulation code for the study of blob and hole propagation dynamics has been developed and verified. The developed 3D-PIC code simulates the boundary layer plasma of magnetic confinement devices, and plasma particles in the simulation systems are distributed to form the blob or hole structures. For the verification, the theoretical blob and hole propagation speeds have been estimated, and the observed blob and hole propagation speeds in the simulations have been compared with the estimations. The observed relations between the propagation speed and the structure size in the blob and hole cases are in good agreement with the theoretical relations. The 3D-PIC code has reproduced a larger distortion of a hole shape than that of a blob shape. Furthermore, the code has shown that the propagation of a blob or a hole is faster without end plates. Such a situation is similar to the detached state.


Keywords

blob, hole, scrape-off layer transport, particle-in-cell simulation

DOI: 10.1585/pfr.12.1401044


References

  • [1] S.I. Krasheninnikov, D.A. D'Ippolito and J.R. Myra, J. Plasma Phys. 74, 679 (2008) and references therein.
  • [2] D.A. D'Ippolito, J.R.Myra and S.J. Zweben, Phys. Plasmas 18, 060501 (2011) and references therein.
  • [3] S. Ishiguro and H. Hasegawa, J. Plasma Phys. 72, 1233 (2006).
  • [4] H. Hasegawa and S. Ishiguro, Plasma Fusion Res. 7, 2401060 (2012).
  • [5] H. Hasegawa and S. Ishiguro, Phys. Plasmas 22, 102113 (2015).
  • [6] S.I. Krasheninnikov et al., Proc. 19th IAEA Fusion Energy Conf. (Lyon, France, 2002) (International Atomic Energy Agency, Vienna, 2003) IAEA-CN-94/TH/4-1.
  • [7] H. Hasegawa and S. Ishiguro, Proc. 26th IAEA Fusion Energy Conf. (Kyoto, Japan, 2016) (International Atomic Energy Agency, Vienna, 2017) IAEA-CN-234-0135/TH/P6-17.
  • [8] H. Hasegawa and S. Ishiguro, Nucl. Fusion 57, 116008 (2017).
  • [9] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill Book Company, New York, 1985, Institute of Physics Publishing, Bristol and Philadelphia, 1991, and Adam Hilger, Bristol and New York, 1991).
  • [10] W.H. Press et al., Numerical recipes in Fortran 77 : The art of scientific computing, 2nd ed. (Cambridge University Press, New York, 1996).
  • [11] D.A. D'Ippolito, J.R. Myra and S.I. Krasheninnikov, Phys. Plasmas 9, 222 (2002).
  • [12] J.R. Myra and D.A. D'Ippolito, Phys. Plasmas 12, 092511 (2005).
  • [13] D. Jovanović, P.K. Shukla and F. Pegoraro, Phys. Plasmas 15, 112305 (2008).
  • [14] J.D. Angus, S.I. Krasheninnikov and M.V. Umansky, Phys. Plasmas 19, 082312 (2012).
  • [15] T. Takizuka and H. Abe, J. Comput. Phys. 25, 205 (1977).
  • [16] K. Nanbu, Phys. Rev. E 55, 4642 (1997).
  • [17] T. Pianpanit, S. Ishiguro and H. Hasegawa, Plasma Fusion Res. 11, 2403040 (2016).
  • [18] R. Décoste et al., Plasma Phys. Control. Fusion 38, A121 (1996).
  • [19] B.L. Stansfield et al., J. Nucl. Mater. 241-243, 739 (1997).
  • [20] N. Ohno, K. Furuta and S. Takamura, J. Plasma Fusion Res. 80, 275 (2004).
  • [21] H. Tanaka et al., Phys. Plasmas 17, 102509 (2010).