Plasma and Fusion Research

Volume 12, 1401042 (2017)

Regular Articles


Multiple-Instabilities in Magnetized Plasmas with Density Gradient and Velocity Shears
Makoto SASAKI1,2), Naohiro KASUYA1,2), Shinichiro TODA3), Takuma YAMADA2,4), Yusuke KOSUGA1,2), Hiroyuki ARAKAWA5), Tatsuya KOBAYASHI3), Shigeru INAGAKI1,2), Akihide FUJISAWA1,2), Yoshihiko NAGASHIMA1,2), Kimitaka ITOH2,3,6) and Sanae-I ITOH1,2)
1)
Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
2)
Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580, Japan
3)
National Institute for Fusion Science, Toki 509-5292, Japan
4)
Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
5)
Teikyo University, Fukuoka 836-8505, Japan
6)
Institute of Science and Technology Research, Chubu University, Kasugai 487-8501, Japan
(Received 24 May 2017 / Accepted 28 August 2017 / Published 16 October2017)

Abstract

Multiple free energy sources for instabilities coexist in magnetized plasmas with density gradient and velocity shear. Linear stabilities are investigated, and the mutual relation between resistive drift wave, D'Angelo mode and flute mode is systematically clarified. By evaluating the linear growth rates, dominant instability is categorized in a parameter space. The parallel wavenumber spectrum could be used as a guideline for the identification of the instabilities.


Keywords

stability, flow shear, turbulence, transport, drift wave, D'Angelo mode, flute mode

DOI: 10.1585/pfr.12.1401042


References

  • [1] W. Horton, Rev. Mod. Phys. 71, 735 (1999).
  • [2] P.H. Diamond et al., Plasma Phys. Control. Fusion 47, R35 (2005).
  • [3] A. Fujisawa et al., Nucl. Fusion 49, 013001 (2009).
  • [4] J.E. Rice et al., Nucl. Fusion 47, 1618 (2007).
  • [5] O.D. Gurcan et al., Phys. Plasmas 14, 042306 (2007).
  • [6] T. Yamada et al., Nucl. Fusion 54, 114010 (2014).
  • [7] T.A. Carter et al., Phys. Plasmas 16, 012304 (2009).
  • [8] D.M. Fisher et al., Phys. Plasmas 24, 022303 (2017).
  • [9] W. Horton et al., Phys. Fluids 30, 3485 (1987).
  • [10] W. Horton et al., Phys. Plasmas 12, 022303 (2005).
  • [11] H. Hasegawa et al., Nature 430, 755 (2004).
  • [12] E.J. Kim et al., Phys. Plasmas 9, 4530 (2002).
  • [13] P. Popovich et al., Phys. Plasmas 17, 102107 (2010).
  • [14] B.N. Rogers et al., Phys. Rev. Lett. 104, 225002 (2010).
  • [15] N. D'Angelo, Phys. Fluids 8, 1748 (1965).
  • [16] Y. Kosuga et al., Plasma Fusion Res. 10, 3401024 (2015).
  • [17] S. Inagaki et al., Sci. Rep. 6, 22189 (2016).
  • [18] X. Garbet et al., Phys. Plasmas 6, 3955 (1999).
  • [19] W.X. Wang et al., Nucl. Fusion 55, 122001 (2015).
  • [20] P.H. Diamond, Nucl. Fusion 53, 104019 (2013).
  • [21] N. Dupertuis et al., Plasma Fusion Res. 12, 1201008 (2017).
  • [22] Y. Kosuga, S.-I. Itoh and K. Itoh, Plasma Fusion Res. 11, 1203018 (2016).
  • [23] M. Sasaki et al., to be submitted to Phys. Plasmas.