Plasma and Fusion Research

Volume 11, 2403006 (2016)

Regular Articles

Saturation Mechanism of Decaying Ion Temperature Gradient Driven Turbulence with Kinetic Electrons
Yasuhiro IDOMURA
Japan Atomic Energy Agency, 178-4 Wakashiba, Kashiwa, Chiba 277-0871, Japan
(Received 5 November 2015 / Accepted 7 December 2015 / Published 24 February 2016)


We present full-f gyrokinetic simulations of the ion temperature gradient driven (ITG) turbulence including kinetic electrons. By comparing decaying ITG turbulence simulations with adiabatic and kinetic electron models, an impact of kinetic electrons on the ITG turbulence is investigated. It is found that significant electron transport occurs even in the ITG turbulence, and both ion and electron temperature profiles are relaxed. In steady states, both cases show upshifts of nonlinear critical ion temperature gradients from linear ones, while their saturation mechanisms are qualitatively different. In the adiabatic electron case, the ITG mode is stabilized by turbulence driven zonal flows. On the other hand, in the kinetic electron case, passing electrons transport shows fine resonant structures at mode rational surfaces, which generate corrugated density profiles. Such corrugated density profiles lead to fine radial electric fields following the neoclassical force balance relation. The resulting E × B shearing rate greatly exceeds the linear growth rate of the ITG mode.


full-f gyrokinetic model, ion temperature gradient driven turbulence, kinetic electron

DOI: 10.1585/pfr.11.2403006


  • [1] Y. Idomura, M. Nakata and S. Jolliet, Plasma Fusion Res. 9, 3503028 (2014).
  • [2] Y. Idomura, H. Urano, N. Aiba and S. Tokuda, Nucl. Fusion 49, 065029 (2009).
  • [3] Y. Idomura, Computational Science and Discovery 5, 014018 (2012).
  • [4] Y. Idomura, Phys. Plasmas 21, 022517 (2014).
  • [5] S. Jolliet and Y. Idomura, Nucl. Fusion 52, 023026 (2012).
  • [6] M. Nakata and Y. Idomura, Nucl. Fusion 53, 113039 (2013).
  • [7] Y. Idomura and M. Nakata, Phys. Plasmas 21, 020706 (2014).
  • [8] Y. Idomura, submitted to J. Comput. Phys.
  • [9] W.W. Lee, J. Comput. Phys. 72, 243 (1987).
  • [10] Y. Idomura, M. Ida, T. Kano, N. Aiba and S. Tokuda, Comput. Phys. Commun. 179, 391 (2008).
  • [11] C. Bourdelle, X. Garbet, F. Imbeaux, A. Casati, N. Dubuit, R. Guirlet and T. Parisot, Phys. Plasmas 14, 112501 (2007).
  • [12] J. Dominski, S. Brunner, T. Gorler, F. Jenko, D. Told and L. Villard, Phys. Plasmas 22, 062303 (2015).
  • [13] A.J. Brizard and T.S. Hahm, Rev. Mod. Phys. 79, 421 (2007).
  • [14] H. Sugama, T.-H.Watanabe and M. Nunami, Phys. Plasmas 16, 112503 (2009).
  • [15] A.M. Dimits, G. Bateman, M.A. Beer, B.I. Cohen, W. Dorland, G.W. Hammett, C. Kim, J.E. Kinsey, M. Kotschenreuther, A.H. Kritz, L.L. Lao, J. Mandrekas, W.M. Nevins, S.E. Parker, A.J. Redd, D.E. Shumaker, R. Sydora and J. Weiland, Phys. Plasmas 7, 969 (2000).
  • [16] S.P. Hirshman and D.J. Sigmar, Nucl. Fusion 21, 1079 (1981).
  • [17] M.B. Isichenko, A.V. Gruzinov and P.H. Diamond, Phys. Rev. Lett. 74, 4436 (1995).
  • [18] X. Garbet, L. Garzotti, P. Mantica, H. Nordman, M. Valovic, H. Weisen and C. Angioni, Phys. Rev. Lett. 91, 035001 (2003).
  • [19] P.H. Diamond, S.-I. Itoh, K. Itoh and T.S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005).