Plasma and Fusion Research

Volume 11, 2402119 (2016)

Regular Articles


The Full-Size Source and Injector Prototypes for ITER Neutral Beams
Gianluigi SERIANNI, Piero AGOSTINETTI, Vanni ANTONI, Daniele APRILE, Carlo BALTADOR, Marco CAVENAGO1), Giuseppe CHITARIN, Nicolo’ MARCONATO, Diego MARCUZZI, Emanuele SARTORI, Piergiorgio SONATO, Vanni TOIGO, Pierluigi VELTRI and Pierluigi ZACCARIA
Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4-35127 Padova, Italy
1)
INFN-LNL, viale dell’Università n. 2, 35020 Legnaro, Italy
(Received 1 December 2015 / Accepted 5 April 2016 / Published 25 November 2016)

Abstract

The development of the NBI systems for ITER requires unprecedented parameters (40 A of negative ion current accelerated up to 1 MV for one hour) so that a test facility is in the final phase of construction at Consorzio RFX (Padova, Italy), housing two experiments. A full-size negative ion source, SPIDER, aims at demonstrating the creation and extraction of a D-/H- current up to 50/60 A on a wide surface (more than 1 m2) with uniformity within 10 %. The second experimental device is the prototype of the whole ITER injector, MITICA, aiming to develop the knowledge and the technologies to guarantee the successful operation of the two injectors to be installed in ITER, including the capability of 1 MV voltage holding at low pressure. The key component of the system is the beam source, whose design results from a trade-off between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. Numerical simulations are a necessary supplement to the experimental effort to optimise the accelerator optics and to estimate heat loads and currents on the various surfaces.
In this paper the main requirements for ITER NBI will be discussed. The design and the status of the main components and systems will be described. Particularly a review of the accelerator physics and a comparison between the designs of the SPIDER and MITICA accelerators are presented. Complex network theory will be applied to the NBI system in order to identify the hidden functional relationships and the most important parameters for the operation.


Keywords

neutral beam injector, plasma heating, systems theory

DOI: 10.1585/pfr.11.2402119


References

  • [1] D. Meade, Nucl. Fusion 50, 014004 (2010).
  • [2] P. Agostinetti et al., Nucl. Fusion 56, 016015 (2016).
  • [3] G. Chitarin et al., Rev. Sci. Instrum. 87, 02B311 (2016).
  • [4] G. Serianni et al., Rev. Sci. Instrum. 87, 02B927 (2016).
  • [5] E. Sartori and P. Veltri, Vacuum 90, 80 (2013).
  • [6] E. Sartori et al., Vacuum 122, Part B, 275 (2015).
  • [7] E. Sartori et al., Rev. Sci. Instrum. 85, 02B308 (2014).
  • [8] E. Sartori et al., AIP Conf. Proc. 1515, 121 (2013).
  • [9] H.P.L. De Esch et al., Nucl. Fusion 55, 096001 (2015).
  • [10] E. Sartori et al., Rev. Sci. Instrum. 87, 02A502 (2016).
  • [11] M. Dalla Palma et al., Fusion Eng. Des. 96-97, 557 (2015).
  • [12] G. Chitarin et al., AIP Conf. Proc. 1655, 040008 (2015).
  • [13] P. Franzen et al., Plasma Phys. Control. Fusion 53, 115006 (2011).
  • [14] M. Fröschle et al., Fusion Eng. Des. 88, 1015 (2013).
  • [15] A. Kojima et al., Nucl. Fusion 51, 083049 (2011).
  • [16] M. Kashiwagi et al., AIP Conf. Proc. 1515, 227 (2013).
  • [17] E. Sartori and P. Veltri, Vacuum 90, 80-88, (2013).
  • [18] G. Chitarin et al., Fusion Eng. Des. 88, 507 (2013).
  • [19] V. Antoni et al., Rev. Sci. Instrum. 85, 02b128 (2014).
  • [20] W.B. Hermannsfeld, Stanford Linear Accel. Center, Tech. Rep. SLAC-226 (1979).
  • [21] J. Paméla, Rev. Sci. Instum. 62, 1163 (1991).
  • [22] OPERA-3D, Vector Fields Co.Ltd., http://operafea.com/
  • [23] Y. Takeiri et al., Rev. Sci. Instrum. 66, 5236 (1995).
  • [24] P. Agostinetti et al., Nucl. Fusion 51, 063004 (2011).
  • [25] P. Veltri et al., IEEE Trans. Plasma Sci. 42, 4 (2014).
  • [26] G. Fubiani et al., Phys. Rev. Special Topics Accel. Beams 11, 014202 (2008).
  • [27] P. Veltri et al., Rev Sci Instrum. 83, 02B709 (2012).
  • [28] E. Sartori et al., Rev. Sci. Instrum. 87, 02B917 (2016).
  • [29] E. Sartori et al., IEEE Trans. Plasma Sci. 42, 3 (2014).
  • [30] P. Veltri et al., Rev. Sci. Instrum. 87, 02B313 (2016).
  • [31] P. Agostinetti et al., Rev. Sci. Instrum. 87, 02B913 (2016).
  • [32] P. Veltri et al., Rev. Sci. Instrum. 87, 02B908 (2016).
  • [33] P. Agostinetti et al., J. Nucl. Mater. 417, 924 (2011).
  • [34] D. Marcuzzi et al., Rev. Sci. Instrum. 87, 02B309 (2016).
  • [35] D. Marcuzzi et al., Fusion Eng. Des. 85, 1792 (2010).
  • [36] V. Antoni et al., submitted to Plasma Sources Sci. Technol.
  • [37] J. Bang-Jensen and G.Z. Gutin, Digraphs (Springer, London, 2001).
  • [38] S. Fortunato, Phys. Rep. 486, 75 (2010).
  • [39] gephi.github.io: free software for graph analysis.
  • [40] F.D. Malliaros and M. Vazirgiannis, Phys. Rep. 533, 95 (2013).
  • [41] C.-T. Lin, IEEE Trans. Autom. Control 19, 201 (1974).
  • [42] R.W. Shields and J.B. Pearson, IEEE Trans. Autom. Control 21, 203 (1976).
  • [43] Y.-Y. Liu, Nature 473, 167 (2011).
  • [44] Zh. Yuan et al., Nature Comm. 4, 2447 (2013).
  • [45] Z. Galil, ACM Comp. Surv. 18, 23 (1986).
  • [46] D. Das et al., Network Prot. Alg. 6, (2014).
  • [47] A. Chatterjee, ICACCI 2013, 1146.