Plasma and Fusion Research

Volume 11, 2402106 (2016)

Regular Articles


Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas
Kenichi NAGAOKA1,2), Hiromi TAKAHASHI1,2), Kenji TANAKA1), Masaki OSAKABE1,2), Sadayoshi MURAKAMI3), Shogo MAETA3), Masayuki YOKOYAMA1), Keisuke FUJII4), Haruhisa NAKANO1,2), Hiroshi YAMADA1,2), Yasuhiko TAKEIRI1,2), Katsumi IDA1,2), Mikiro YOSHINUMA1,2) and the LHD Experiment Group
1)
National Institute for Fusion Science, Toki 509-5292, Japan
2)
SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292, Japan
3)
Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan
4)
Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan
(Received 9 December 2015 / Accepted 22 June 2016 / Published 16 September 2016)

Abstract

Ion internal transport barrier (ITB) was formed in both hydrogen discharge and helium dominated discharge. The central ion temperature was investigated as a function of the hydrogen density ratio (nH/(nH+nHe)). The central ion temperature increases with the decrease of the hydrogen density ratio, while the electron temperature does not change significantly. The experimentally observed ion temperature was not reproduced by the prediction of TASK-3D modeling. The dominant activity in the density fluctuation measured by the phase contrast imaging is consistent with ion temperature gradient mode and they are almost identical between the hydrogen dominated and helium dominated plasmas.


Keywords

ion ITB, helical plasma, isotope effect, deuterium experiment

DOI: 10.1585/pfr.11.2402106


References

  • [1] M. Osakabe et al., the 25th International Toki Conference, invited talk (I-1), 3rd Nov. 2015, Toki, Japan.
  • [2] For example, Y.R. Martin et al., J. Phys.: Conf. Ser. 123, 012033 (2008).
  • [3] H. Urano et al., Nucl. Fusion 52, 114021 (2012).
  • [4] T.H. Watanabe, H. Sugama and M. Nunami, Nucl. Fusion 51, 123003 (2011).
  • [5] O. Motojima et al., Nucl. Fusion 43, 1674 (2003).
  • [6] H. Takahashi, M. Osakabe et al., Plasma Fusion Res. 9, 1402050 (2014).
  • [7] H. Takahashi, M. Osakabe, K. Nagaoka et al., J. Nucl. Mater. 463, 1100 (2015).
  • [8] K. Nagaoka, H. Takahashi, S. Murakami et al., Nucl. Fusion 55, 113020 (2015).
  • [9] M. Yoshinuma et al., Fusion Sci. Technol. 58, 375 (2010).
  • [10] M. Goto, S. Morita, K. Sawada et al., Phys. Plasmas 10, 1402 (2003).
  • [11] S. Murakami et al., the 26th IAEA Fusion Energy Conf. (St Petersburg, 13 - 18 October 2014) TH/P6-38.
  • [12] S. Murakami et al., 20th International Stellarator- Heliotron Workshop (ISHW), October 5 - 9, 2015, Greifswald, Germany, P1S2-23.
  • [13] S. Murakami et al., Plasma Phys. Control. Fusion 57, 054009 (2015).
  • [14] S. Murakami et al., Nucl. Fusion 46, S425 (2006).
  • [15] S. Maeta et al., the 25th international Toki conference, 2015, Toki, Japan. P1-116.
  • [16] K. Tanaka et al., Rev. Sci. Instrum. 79, 10E702 (2008).
  • [17] K. Tanaka et al., Plasma Fusion Res. 5, S2053 (2010).
  • [18] M. Nunami et al., Plasma Fusion Res. 6, 1403001 (2011).
  • [19] M. Nunami et al., Phys. Plasmas 19, 042504 (2012).
  • [20] K. Nagaoka et al., Nucl. Fusion 51, 083022 (2011).
  • [21] M. Yokoyama et al., 20th International Stellarator- Heliotron Workshop (ISHW), October 5 - 9, 2015, Greifswald, Germany, P2S3-49.