Plasma and Fusion Research

Volume 11, 2402054 (2016)

Regular Articles

Increase in Ion Temperature by Slow Wave Heating in Magnetosphere Plasma Device RT-1
Masaki NISHIURA, Zensho YOSHIDA, Yoshihisa YANO, Yohei KAWAZURA, Toshiki MUSHIAKE, Haruhisa SAITOH, Miyuri YAMASAKI, Ankur KASHYAP, Noriki TAKAHASHI, Masataka NAKATSUKA, Yuichi TAKASE and Atsushi FUKUYAMA1)
Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
Department of Nuclear Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
(Received 30 November 2015 / Accepted 8 February 2016 / Published 17 May 2016)


Ion cyclotron range of frequencies (ICRF) heating with a frequency of a few MHz and an input power of 10 kW was applied for the first time, to the best of our knowledge, in a magnetosphere plasma device. An antenna was installed near the pole of a dipole field for slow-wave excitation. Further, a ∩-shaped antenna was implemented and characterized for efficient ion heating. Electron cyclotron heating with an input power of 8 kW sustained helium plasmas with a fill gas pressure of 3 mPa. ICRF heating was then superimposed onto the target plasma (H, D, and He). While the ICRF power was turned on, the increase in ion temperatures was observed for low-pressure helium plasmas. However, the temperature increase was not clearly observed for hydrogen and deuterium plasmas. We discuss the experimental results in terms of power absorption based on result calculated with the TASK/WF2 code.


magnetosphere plasma, ion heating, slow wave, high beta

DOI: 10.1585/pfr.11.2402054


  • [1] A. Hasegawa, L. Chen and M.E. Mauel, Nucl. Fusion 30, 2405 (1990).
  • [2] Z. Yoshida, H. Saitoh, J. Morikawa, Y. Yano, S. Watanabe and Y. Ogawa, Phys. Rev. Lett. 104, 235004 (2010).
  • [3] H. Saitoh, Z. Yoshida, J. Morikawa, Y. Yano, T. Mizushima, Y. Ogawa, M. Furukawa, Y. Kawai, K. Harima, Y. Kawazura, Y. Kaneko, K. Tadachi, S. Emoto, M. Kobayashi, T. Sugiura and G. Vogel, Nucl. Fusion 51, 063034 (2011).
  • [4] Z. Yoshida, H. Saitoh, Y. Yano, H. Mikami, N. Kasaoka,W. Sakamoto, J. Morikawa, M. Furukawa and S.M. Mahajan, Plasma Phys. Control. Fusion 55, 014018 (2013).
  • [5] H. Saitoh, Y. Yano, Z. Yoshida, M. Nishiura, J. Morikawa, Y. Kawazura, T. Nogami and M. Yamasaki, Phys. Plasmas 21, 082511 (2014).
  • [6] M. Nishiura, Z. Yoshida, H. Saitoh, Y. Yano, Y. Kawazura, T. Nogami, M. Yamasaki, T. Mushiake and A. Kashyap, Nucl. Fusion 55, 053019 (2015).
  • [7] Y. Kawazura, Z. Yoshida, M. Nishiura, H. Saitoh, Y. Yano, T. Nogami, N. Sato, M. Yamasaki, A. Kashyap and T. Mushiake, Phys. Plasmas 22, 112503 (2015).
  • [8] Z. Yoshida, S.M. Mahajan, T. Mizushima, Y. Yano, H. Saitoh and J. Morikawa, Phys. Plasmas 17, 112507 (2010).
  • [9] T.H. Stix, Waves in Plasmas (American Institute of Physics, New York, 1992), pp. 342-343.
  • [10] Y. Yasaka, Plasma Fusion Res. 75, 1069 (1999).
  • [11] J.C. Hosea and R.M. Sinclair, Phys. Fluids 13, 701 (1970).
  • [12] Y. Yamaguchi, M. Ichimura, T. Ouchi, I. Kozawa, H. Muro, S. Sato, A. Fukuyama, H. Hojo, M. Katano, Y. Motegi, J. Ohishi, T. Murakami, Y. Sekihara and T. Imai, Trans. Fusion Sci. Technol. 55, 106 (2009).
  • [13] M. Inutake, A. Ando, K. Hattori, H. Tobari, T. Makita, M. Shibata, Y. Kasashima and T. Komagome, Plasma Phys. Control. Fusion 49, A121 (2007).
  • [14] A.C. Boxer, R. Bergmann, J.L. Ellsworth, D.T. Garnier, J. Kesner, M.E. Mauel and P. Woskov, Nature Physics 6, 207 (2010).