Plasma and Fusion Research

Volume 11, 2401080 (2016)

Regular Articles


Tungsten-Surface-Structure Dependence of Sputtering Yield for a Noble Gas
Hiroaki NAKAMURA1,2), Seiki SAITO3), Atsushi M. ITO1) and Arimichi TAKAYAMA1)
1)
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
2)
Nagoya University, Toki, Gifu 509-5292, Japan
3)
National Institute of Technology, Kushiro College, Kushiro, Hokkaido 084-0916, Japan
(Received 27 November 2015 / Accepted 7 April 2016 / Published 10 June 2016)

Abstract

Using the binary-collision approximation simulation with atomic collision in any structured target code AC∀T, we calculated sputtering yield, range, and retention rate for tungsten with a rough surface under argon atom irradiation. The simulation revealed the sputtering yield decreases and the retention rate increases as the surface becomes rougher. Because these quantities strongly depend on the surface, we suggest that it is necessary to consider the surface structure of the tungsten target when estimating the effects of walls.


Keywords

binary collision approximation, sputtering yield, fuzz structure, tungsten, argon, irradiation, range, retention rate, surface structure

DOI: 10.1585/pfr.11.2401080


References

  • [1] H. Iwakiri, K. Yasunaga, K. Morishita and N. Yoshida, J. Nucl. Mater. 283-287, 1134 (2000).
  • [2] D. Nishijima, M.Y. Ye, N. Ohno and S. Takamura, J. Nucl. Mater. 329-333, 1024 (2004).
  • [3] S. Takamura, N. Ohno, D. Nishijima and S. Kajita, Plasma Fusion Res. 1, 051 (2006).
  • [4] S. Kajita, T. Saeki, Y. Hirahata, M. Yajima, H. Phno, R. Yoshihara and N. Yoshida, Jpn. J. Appl. Phys. 50, 08JG01 (2011).
  • [5] S. Kajita, W. Sakaguchi, N. Ohno, N. Yoshida and T. Saeki, Nucl. Fusion 49, 095005 (2009).
  • [6] S. Yajima, M. Yamagiwa, S. Kajita, N. Ohno, M. Tokitani, A. Takayama, S. Saito, A.M. Ito, H. Nakamura and N. Yoshida, J. Plasma Sci. Technol. 15, 282 (2013).
  • [7] S.I. Krasheninnikov, Phys. Scr. T145, 014040 (2011).
  • [8] A.M. Ito, A. Takayama, Y. Oda, T. Tamura, R. Kobayashi, T. Hattori, S. Ogata, N. Ohno, S. Kajita, M. Yajima, Y. Noiri, Y. Yoshimoto, S. Saito, S. Takamura, T. Murashima, M. Miyamoto and H. Nakamura, J. Nucl. Mater. 463, 109 (2015).
  • [9] A.M. Ito, A. Takayama, Y. Oda, T. Tamura, R. Kobayashi, T. Hattori, S. Ogata, N. Ohno, S. Kajita, M. Yajima, Y. Noiri, Y. Yoshimoto, S. Saito, S. Takamura, T. Murashima, M. Miyamoto and H. Nakamura, Nucl. Fusion 55, 073013 (2015).
  • [10] D. Nishijima, M.J. Baldwin, R.P. Doerner and J.H. Yu, J. Nucl. Mater. 415, S96 (2011).
  • [11] M.T. Robinson and I.M. Torrens, Phys. Rev. B 9, 5008 (1974).
  • [12] J.P. Biersack and W. Eckstein, Appl. Phys. A 34, 73 (1984).
  • [13] Y. Yamamura and Y. Mizuno, IPPJ-AM-40, Inst. Plasma Phys., Nagoya University, 1985, (http://dpc.nifs.ac.jp/IPPJAM/IPPJ-AM-40.pdf).
  • [14] Y. Yamamura, I. Yamada and T. Takagi, Nucl. Instrum. Methods Phys. Res. Sect. B 37-38, 902 (1989).
  • [15] K. Ohya and R. Kawakami, Jpn. J. Appl. Phys. 40, 5424 (2001).
  • [16] A. Takayama, S. Saito, A.M. Ito, T. Kenmotsu and H. Nakamura, Jpn. J. Appl. Phys. 50, 01AB03 (2011).
  • [17] S. Saito, A. Takayama, A.M. Ito and H. Nakamura, Proc. Int. Conf. Model. Simulation Technol., 197 (2011).
  • [18] S. Saito, A.M. Ito, A. Takayama and H. Nakamura, J. Nucl. Mat. Suppl. 438, S895 (2013).
  • [19] H. Nakamura et al., ISPlasma 2014, 06aP06.
  • [20] M.M. Bredov, I.G. Lang and N.M. Okuneva, Zh. Tekh. Fiz. 28, 252 (1958).
  • [21] M.M. Bredov, I.G. Lang and N.M. Okuneva, Sov. Phys.-Tech. Phys. 3, 228 (1958).
  • [22] G. Moliere, Z. Naturforsch. A2, 133 (1947) (in German).