Plasma and Fusion Research

Volume 11, 2401071 (2016)

Regular Articles

Formation Mechanism of a Periodic Nanograting Structure by a Surface Plasma Wave
Amany Moustafa GOUDA, Hitoshi SAKAGAMI1), Tomoya OGATA, Masaki HASHIDA2) and Shuji SAKABE2)
Department of Physics, Nagoya University, Nagoya 464-8602, Japan
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
(Received 30 November 2015 / Accepted 4 February 2016 / Published 13 July 2016)


A two-dimensional particle in cell code has been used to demonstrate the formation mechanism of a periodic nanograting structure in the hydrogen plasma. By using a linearly polarized, ultrafast laser beam with a wavelength of 800 nm, an incidence angle of 0°, and an intensity of 1016 W/cm2–μm2, the periodic nanograting structure was clearly self-organized at the boundary between a preformed and dense plasma at t = 600 fs. The bidirectional surface plasma wave plays a significant role together with the oscillating two-stream instability in producing the periodic nanograting structure.


periodic nanograting structure, laser, plasma, laser plasma interaction, surface plasma wave, ponderomotive force, oscillating two-stream instability

DOI: 10.1585/pfr.11.2401071


  • [1] D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wahmer and E.E.B. Campbell, Appl. Surf. Sci. 120, 65 (1997).
  • [2] A.M. Ozkan, A.P. Malshe, T.A. Railkar and W.D. Brown, Appl. Phys. Lett. 75, 3716 (1999).
  • [3] J. Reif, F. Costache, M. Henyk and S.V. Pandelov, Appl. Surf. Sci. 891, 197 (2002).
  • [4] N. Yasumaru, K. Miyazaki, J. Kiuchi and H. Magara, (3rd Asian Pacific Laser Symposium (APLS2002), Osaka, Japan, 2002, pp. 27–31.
  • [5] J. Bonse, H. Sturm, D. Schmidt and W. Kautek, Appl. Phys. A 71, 657 (2000).
  • [6] M. Hashida, M. Fujita, Y. Izawa and A.F. Semerok, Laser Precision Microfabrication, ed. by I. Miyamoto et al., Proceedings of SPIE 4830, 452 (2002).
  • [7] S. Matsumoto, A. Yane, S. Nakashima, M. Hashida, M. Fujita, Y. Goto and S. Takahashi, J. Am. Chem. Soc. 129, 3840 (2007).
  • [8] A. Vorobyev and C. Guo, Laser Photonics Rev. 7, 385 (2013).
  • [9] M. Kawamoto, M. Hashida, Y. Miyasaka, M. Shimizu et al., IEEJpn., LAV-13-016, 7–10 (2013).
  • [10] S. Sakabe, M. Hashida, S. Tokita, S. Namba and K. Okamuro, Phys. Rev. B 79, 033409 (2009).
  • [11] T. Itana, R. Torres, T. Sarnet and M. Sentis, J. Appl. Phys. 114, 083104 (2013).
  • [12] T.Q. Jia, H.X. Chen, M. Huang, F.L. Zhao, J.R. Qiu, R.X. Li, Z.Z. Xu, X.K. He, J. Zhang and H. Kuroda, Phys. Rev. B 72, 125429 (2005).
  • [13] M. Hashida, L. Gemini, T. Nishii and Y. Miyasaka, Optical Society of America, paper SF21.3 (2015).
  • [14] H. Sakagami and K. Mima, Proc. 2nd Int. Conf. on Inertial Fusion Sciences and Applications, Kyoto, 2001, Elsevier, Paris, pp. 380–383 (2001).
  • [15] S. Sakabe, M. Hashida, S. Tokita, S. Namba and K. Okamuro, Phys. Rev. B 79, 033409 (2009).
  • [16] A. Bouhelier, F. Ignatovich, A. Bruyant and C. Huang, Opt. Lett. 32, 17 (2007).
  • [17] J.M. Pitarke, V.M. Silkin and E.V. Chulkov, Rep. Prog. Phys. 70, 1 (2007).
  • [18] J. Homola, S. Yee and G. Gauglitz, Sens. Actuators B, Chem. 54, 3 (1999).
  • [19] F.F. Chen, Library of Congress Cataloging in Publication Data (Plenum Press, New York and London, 1974) p.362.