Plasma and Fusion Research

Volume 11, 1403103 (2016)

Regular Articles


SOLPS-ITER Modeling of the Alcator C-Mod Divertor Plasma
Wouter DEKEYSER, Xavier BONNIN, Steven W. LISGO, Richard A. PITTS, Dan BRUNNER1), Brian LABOMBARD1) and Jim L. TERRY1)
ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance, France
1)
MIT Plasma Science and Fusion Center, Cambridge, MA 02139, USA
(Received 1 April 2016 / Accepted 25 May 2016 / Published 19 August 2016)

Abstract

SOLPS-ITER is a new edge code package that will be developed and maintained at the ITER Organization [X. Bonnin et al., Plasma Fusion Res. 11, 1403102 (2016)], in close collaboration with the wider SOLPS community, and will be used to support the design of the ITER divertor [A.S. Kukushkin et al., Fusion Eng. Des. 86, 2865 (2011)]. In this paper, we report on the first application of the code to the modeling of the Alcator C-Mod divertor. With its high density, high magnetic field, and strong ITER-like target shaping, C-Mod is of particular interest to ITER in terms of plasma and neutral parameters in the divertor. We show that with a fluid neutral model, we can qualitatively reproduce the observed particle fluxes to inner and outer targets under partially detached conditions. However, simulated electron temperatures in the divertor are much too low. A number of physics and numerical reasons are proposed to resolve this issue and serve as a guideline for further development of the code.


Keywords

edge plasma modeling, divertor modeling, scrape-off layer, SOLPS-ITER, Alcator C-Mod

DOI: 10.1585/pfr.11.1403103


References

  • [1] X. Bonnin, W. Dekeyser, R.A. Pitts et al., Plasma Fusion Res. 11, 1403102 (2016).
  • [2] A.S. Kukushkin, H.D. Pacher, V. Kotov et al., Fusion Eng. Des. 86, 2865 (2011).
  • [3] S. Wiesen, D. Reiter, V. Kotov et al., J. Nucl. Mater. 463, 480 (2015).
  • [4] F. Wising, D.A. Knoll, S.I. Krasheninnikov et al., Contrib. Plasma Phys. 36, 136 (1996).
  • [5] B. LaBombard, M.V. Umansky, R.L. Boivin et al., Nucl. Fusion 40, 2041 (2000).
  • [6] D.P. Stotler, R.A. Vesey, D.P. Coster et al., J. Nucl. Mater. 266-269, 947 (1999).
  • [7] M.V. Umansky, D. Brunner, B. LaBombard et al., Contrib. Plasma Phys. 52, 417 (2012).
  • [8] D. Brunner, M.V. Umansky, B. LaBombard, et al., J. Nucl. Mater. 438, S1196 (2013).
  • [9] X. Bonnin, D. Coster, C.S. Pitcher et al., J. Nucl. Mater. 313-316, 909 (2003).
  • [10] N. Smick, B. LaBombard and I.H. Hutchinson, Nucl. Fusion 53, 023001 (2013).
  • [11] X. Bonnin, D. Coster, R. Schneider et al., J. Nucl. Mater. 337-339, 301 (2005).
  • [12] S. Lisgo, P. Börner, C. Boswell et al., J. Nucl. Mater. 337-339, 139 (2005).
  • [13] A.S. Kukushkin, H.D. Pacher, A. Loarte et al., Nucl. Fusion 49, 075008 (2009).
  • [14] R. Schneider, X. Bonnin, K. Borrass et al., Contrib. Plasma Phys. 46, 3 (2006).
  • [15] D. Reiter, Eirene - A Monte Carlo linear transport solver, http://www.eirene.de
  • [16] V. Rozhansky, E. Kaveeva, P. Molchanov et al., Nucl. Fusion 49, 025007 (2009).
  • [17] L. Aho-Mantila, M. Wischmeier, H.W. Müller et al., Nucl. Fusion 52, 103006 (2012).
  • [18] F. Reimold, M. Wischmeier, M. Bernert et al., J. Nucl. Mater. 463, 128 (2015).
  • [19] M. Baelmans, P. Börner, W. Dekeyser et al., Nucl. Fusion 51, 083023 (2011).
  • [20] D. Brunner, B. LaBombard, R.M. Churchill et al., Plasma Phys. Control. Fusion 55, 095010 (2013).
  • [21] J.G. Watkins, R.A. Moyer, J.W. Cuthbertson et al., J. Nucl. Mater. 241-243, 645 (1997).
  • [22] J.R. Harrison, G.M. Fishpool and B.D. Dudson, J. Nucl. Mater. 463, 757 (2015).
  • [23] W. Dekeyser, D. Reiter and M. Baelmans, Proc. Appl. Math. Mech. 14, 1017 (2014).